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CHAPTER 1
INTRODUCTION

In this report a combination of high frequency and modal ray
techniques is employed to develop a relatively simple analysis of
electromagnetic (EM) scattering by electrically large, open-ended
wavequide cavities with discontinuities. It is assumed that the medium
exterior and interior to these waveguide cavities is homogeneous,
isotropic and lossless. The waveguides possess perfectly-conducting
walls, Therefore, they do not radiate energy transversally, so they are
in the class of closed waveguides as opposed to open waveguides whose
cross-section does not confine the field by impenetrable walls,
Specifically, the two dimensional (2-D) and three dimensional (3-D)

:.t:‘.:.:..-.n'ide rayitioc whir arn rancidarasd bara rn FAarnmond hu A
1vuv\-=u| wUuvriIVviIiwY LA S G- WUt I VLT 1IN . P PV TGO VJ 1

ing

e

£u

different uniformly tapered or curved sections as shown in Figure 1,1,
Junctions are formed at the open-end and within interior regions where
different sections are joined. Although the semi-infinite waveguide
geometries in Figure 1.1 do not indicate any interior termination, the
present analysis can also account for some simple terminations for which
the modal reflection matrix is known, such as a planar short circuit, an

impedance surface termination, or even a homogeneous dielectric loading.
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Figure 1.1, Waveguide geometries considered,
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‘ Figure 1.1. (continued)

It is well known that the EM field in a waveguide can be expressed
in terms of a
If the waveguide geometry conforms to constant coordinate surfaces of a
coordinate system in which the Helmholtz equation is separable, then the
modes can be determined analytically. These analytical modal
expressions inherently include the variation of the field along a
non-uniform (or tapered) waveguide as long as modes do not experience
cut-off as they propagate within the guide. In the waveguide geometries
considered, the above conditions are assumed to prevail. Therefore,

under the above conditions, any scattering which occurs within the

waveguide arises from the abrupt junction discontinuities between



different sections. Such a scattering can be expressed in terms of
modal reflection and transmission coefficients.

In closed waveguide structures, the modal set is discrete, and the
classical approach for the analysis of a waveguide discontinuity is to
expand the fields in terms of the modal sets on each side of the
discontinuity and then match these fields at the discontinuity by
enforcing the appropriate boundary conditions. The presence of a
discontinuity gives rise to a storage of reactive energy in the vicinity
of the discontinuity in terms of evanescent modes; i.e., the modes which
decay exponentially with distance away from the junction. Therefore,
the mode matching approach results in an infinite set of equations to be
solved. In some cases, exact solutions can be obtained by direct matrix
inversion techniques, by transform techniques (Wiener-Hopf) or, by the
residue calculus technique. In the latter residue calculus technique,
it is necessary to construct a complex valued function which, when
jntegrated along a specified contour gives the infinite set of mode
matching equations. Also, variational and perturbational techniques are
used very extensively for waveguides with a single propagating mode.

The above methods are described in [1,2,3]. These techniques are
limited to certain geometries and they are difficult, if not impossible,
to generalize to other structures; however, they are usually easier to
apply to waveguides of smaller cross-sections which allow only a few,
and in most cases only the dominant, mode or modes to propagate.

Similar techniques can be applied to open waveguide structures where the

problem is more complicated by the fact that the modal spectrum has a




continuous part. The discussion of continuous transitions in open

waveguide structures is presented in [4], which also includes a very
complete list of references on the subject.-

A powerful method to analyze wave propagation through waveguide
transitions, couplers and tapers is based on the concept of generalized
transmission line or coupled wave equations. This concept was first
proposed and studied in detail by Schellkunoff [5]. An extensive
bibliography and study of different applications of this method are in
[6]. However, the coupled wave equations are mostly applied to the
problems of smooth transitions where one converts the Maxwell's
equations into telegrapher's equations and obtains a matrix differential

equation for the unknown voltages. A limiting approach can be employed

. for abrupt discontinuities, and in this case, it reduces to the mode

matching procedure [6]. Adiabatic or slowly varying coupling
constitutes an extension of coupled wave theory [7], and reduces to the
WKB approximation. Curved waveguides were studied in detail by Lewin
[8] and asymptotic approximations with respect to the radius of
curvature of the waveguide are used for the fields. These approximate
fields are then matched at the junction to get an integral equation for
the junction fields. However, coupled wave equations and integral
equation formulations are related to mode matching procedures;
consequently, they are cumbersome to employ in practice,

Application of ray optics to waveguide discontinuity problems is
relatiQe]y new; yet it has received substantial attention in the
literature because of its usefulness and conceptual simplicity. Both

Rudduck [9] and Yee, Felsen and Keller [10] applied the geometrical




theory of diffraction (GTD) [11] to determine the modal reflection
coefficients of an open-ended parallel plate wavgguide. In [10], the
effect of multiple interactions between the edges is taken into account
in a simple, elegant but ‘approximate manner, More rigorous approaches
to determine the effect of multiple ray interactions at the aperture of
an open-ended semi-infinite parallel plate geometry were described later
by Boersma and Lee [12-16]. Their results [12-16] agree with the
asymptotic expansion of the exact solution. An application of the GTD
to calculate the reflection from the aperture of an E-plane sectoral
horn was described by Jull [17]. The ray-optical techniques require
that at each uniform waveguide section, the fields incident at the
’junction be expressed in terms of a set of rays associated with each of
the characteristic waveguide modes. The latter set is referred to as
modal rays. For parallel plate, circular and tapered waveguide
sections, the modal ray representations have been discussed by Felsen
and Maurer [18,19].

Yee and Felsen also described the ray-optical procedure for the
reflection of acoustic waves from an open-ended circular pipe [20]. A
ray picture for the EM waves in a circular waveguide is described by
Ivanyan [21]; however, his rays do not appear to exhibit the usual plane
wave propagation constant. In [22], a different ray picture which
consists of a set of conical wavefronts that converge and diverge with
respect to the waveguide axis is used for the circular waveguide. The

results based on this modal ray description which are presented in [22]

are excellent,




The basic approach employed in this work combines the use of modal
rays discussed above, with the high frequency techniques, to calculate
the relevant reflection and transmission properties associated with
waveguide discontinuiiies using the multiple scattering matrix (MSM)
formulation. The general idea behind this approach is briefly
illustrated as follows. Figure 1.2 shows a waveguide cavity with three
sections, The scattered field in the exterior region is composed of two
main contributions; one of these is due to the field scattered from the
open end alone, and the other is due to the field which is coupled into
the interior and then re-radiated from the open end. The latter
undergoes multiple reflections between the open end and the

discontinuities inside the cavity, after it is initially coupled into

i UNCTION
E @ ® J 6

Figure 1.2. A waveguide cavity with three junctions.



the waveguide ffom the incident field, The fields resulting from these
multiple interactions may be expressed as a convergent Neumann series as
done by Pace and Mittra [23]. The same result i§ directly obtained by
an alternative procedure based on a self-consistent multiple scattering
matrix (MSM) method [22]. Therefore, it is possible to identify and
isolate the wave scattering mechanisms in terms of the scattering
matrices [S] of the junction which describe the reflectionAand
transmission properties of the discontinuity at the junction. In Figure
1.3 the junction discontinuities are isolated and the wave interaction
described by the various scattering matrices are illustrated. Once the
elements of these scattering matrices are determined, then they can be
‘combined using the self-consistent MSM procedure indicated above.
Therefore, the effects of all multiple interactions can be viewed as
being associated with a single effective discontinuity with its
corresponding scattering matrix. In particular, the effects of
scattering from the discontinuities beyond Junction @ for the problem in
Figure 1.2, can be represented by an effective reflection matrix [SF],‘
as shown in Figure 1.4.

A dielectric loading inside the waveguide cavity will cause modal
reflections determined by the geometry and the electrical properties of
the dielectric material. These reflections can similarly be represented
by the scattering matrix [S;], whose entries relate the incident and
reflected modal field amplitudes. Therefore, Figure 1.4 may also
simulate the scattering by a dielectric loading located at the

position()in waveguide A, as shown in the figure.
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Figure 1.3, Isolation of scattering mechanisms and illustration of
scattering matrices.
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‘Figure 1.4, Effective scattering geometry for the problem
in Figure 1.2.

As indicated earlier, relatively simple expressions have been
developed in this work for the elements of the scattering matrices via
the use of high frequency techniques combined with the modal ray
description for the fields inside the waveguide. In particular, the
high-frequency techniques which are employed here include the GTD, the
equivalent currenf method (ECM) [24,25,26], and a modification of the
physical theory of diffraction (PTD) [26,27], depending on the
scattering matrix being calculated. The previous ray optical approaches
[9,10] seem to be applicable to certain geometries with some symmetry
properties., In contrast, the present approach besides being relatively

simple is more general than the previous ray optical treatments and also
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allows one to treat many junction types which would otherwise be
intractable or cumbersome to analyze via the classical mode matching
approach, Furthermore, since the present approach deals with the
interactions in a seduentia1 manner, by isolating the effects of the
different junctions, it is therefore also physically appealing. Some of
the special junctions treated here have rigorous Wiener-Hopf solutions,
e.g., open-ended circular pipe and parallel plate geometries [28].
These Wiener-Hopf solutions are relatively more difficult to obtain and
are limited to very special geometries such as those mentioned above.
However, they provide a good check for the present high frequency based
solutions. As it is common to all ray methods, the procedure described
here is valid for waveguides which are sufficiently far from cut-off,
" Furthermore, the approximation in the high frequency approaches improves
as the number of propagating modes inside the waveguide increases. This
latter property is actually a merit, rather than a drawback of the high
freauency based procedures since for small waveguides the other
approximate methods can safely be used.

The format of the report is as follows. Definition of the
relevant scattering matrices and a description of the multiple
scattering matrix approach which employs these scattering matrices are
included in Chapter II. Chapter III is devoted to the development of
scattering matrices for several specific waveguide geometries. They are
presented under two categories; namely, reflection type scattering
matrices and transmission type scattering matrices. For a junction

between two interior waveguide sections, the elements of the scattering

11



matrices are the modal reflection and transmission coefficients. In the
case of a waveguide discontinuity formed by the ppen-end; the elements
of the scattering matrices describe the interior modal reflection as
well as the exterior rim scattering associated with the open-end;
likewise, they also describe the exterior radiation and interior
coupling phenomena. The radiation from the open-ended waveguide into
the exterior region and the coupling into the interior region due to
excitation from the exterior may be viewed as being described by
transmission coefficients. All of these mechanisms are described
separately, and in some case illustrative examples and comparisons are
provided, In Chapter IV, the scattering matrices of Chapter III are
‘used to solve some two and three dimensional problems. Whenever
possible, the results are compared with other methods of solution or
measurements, Finally, some conclusions based on this work are given in
Chapter V. An eJwt time convention for the fields has been assumed and

suppressed throughout the analysis.
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CHAPTER II
SELF CONSISTENT MULTIPLE SCATTERING MATRIX FORMULATION

As mentioned in the previous chapter, the solutidn to the problem
of the scattering from a waveguide cavity can be constructed by first
calculating the isolated scattering matrices associated with the
pertinent discontinuities and then combining these matrices using a self
consistent MSM formulation. Essentially, MSM is the same as the
generalized scattering matrix technique (GSMT) introduced previously to
. generalize the Wiener-Hopf solutions [2,23].

The concept of the scattering matrix is widely used in microwave
circuit theory and relates the scattered wave amplitudes to the incident
wave amplitudes. Therefore, it characterizes circuit properties of a
microwave network.

An N-port junction is shown in Figure 2.1, The incident wave
amplitudes propagating toward the junction are represented by V*,
n=1.....,N. and scattered wave amplitudes are shown by V-, n=1.....,N.
The scattering matrix [S] of the junction relate these quantities.

Thus, in general, one can write

- - - -
V] v
- +
Vo | =181 | Yy (2.1)
._ .+
V e
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Figure 2.1. An N-port junction.

A waveguide containing N "propagating" modes can be represented by
an N-port junction. The incident and reflected wave (or mode)
amplitudes are denoted by [V*] and [V-]. In addition, one can extend
the scattering matrix definition to include the scattering of
"evanescent" modes; however in this case, the modes are not normalized
to carry unit power. A waveguide cavity with junctions(:>and<:)is shown
in Figure 2,2, It is assumed that the Helmholtz equation is separable
in the orthogonal curvilinear coordinate system (n,y,&) shown in the
figure, in which the n-coordinate coincides with the propagation axis of
the waveguide. Therefore, the n-coordinate corresponds to the direction
of propagation of the modal field sets inside the cavity. Junction @ is

the open end of the cavity and junction @ is the termination inside the
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cavity which is»separated from junction ! by the distance (L), along the
n coordinate. Therefore, the phase delay of the modal field sels that
propagate from junction ! to junction 2 is given by the propagation
constant of the modes multiplied the distance (L), For convenience,
only the fields exterior to the wavequide are expressed in spherical

coordinates,
Let a plane wave E' be incident at the open end of the cavity. One

may express incident field as follows:

=i o_ a1 i i i
E =29 Ee + ¢ E¢ (2.2a)
with
0 0 °
. . T
1 1 -Jk or
=A e 2.2¢
E¢ o ( )
where
KV o= -k(sine1cos¢1 X + sine1sin¢1; + cose12) (2.3)
and
r = X; + y; + Z; . (2.4)

It is noted that k=2x/) refers to the free space wavenumber,
(A=wavelength in free space) and r refers to the position vector of an
observation point. The angles o1 and ¢i are the elevation and azimuth

angles of the direction of incoming field in the spherical coordinates.

The corresponding magnetic field H! is obtained from

HY = A k' x B! (2.5)

-1

where Yo = Z0 is the admittance of free-space.
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Figure 2.2, An open-ended waveguide cavity problem.

The scattering matrix [S17] (see Figure 2.3), defines a scattering
mechanism which converts the incident exterior region field into a field
scattered back into the exterior region without including any interior
region effects. In other words, it relates the electric field (ESO)
scattered from only the open end, to the field Ei which is incident at

the open end as follows:

—ksd— —
X Ai
so | _ 8
Ey [511] Ai (2.6)
SO ¢ |
z —
where
ESO(p) = ESO x + E;° y + ES® 2 (2.7)

16




and

Sxe SX¢

S . (2.8)

|:511] = Sye yé

S:0 Sz4

When the observation point recedes to infinity, i.e., the far zone
case, then the range dependent part of the scattered field can be

brought out of the scattering matrix, so [SI;] for the latter case is

defined as follows:

By £ A; e IkT
so | Bl | T (2.9)
| 6 b
with
~ s -
[51{] =| 098 8¢ ) (2.10)
S s
i ¢8 Pt

The scattering matrix [512] converts the waveguide modal fields
incident at the open end (from the interior region) to»the exterior
region fields radiated by these modes as shown in Figure 2.4, The modal
electric fig]d E; within the uniform waveguide region may be represented
by

- - #j8,n
(ent + enn) e . (2.11)

=+
E- =z C
W n

3 I+

Here, ént denotes the transverse (to a) modal electric field of a
waveguide uniform in the ;-direction, and B, is the propagation constant

of the corresponding mode. The axial (or ;) component of the modal
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field is denoted by énn' It is noted that the index n denotes a compact
mode index, which corresponds to the double index nm in 3-D waveguides.
The superscripts + and - in (2.11) refer to modeé propagating in

+; and -; directions, respectively. It is convenient to define the
magnetic field ﬁi in the waveguide region following the representation
for the electric field Ei in (2.11); thus, the magnetic field is

given by [1]

o _ - n

="

The Ci in (2.11) and (2.12) are the modal coefficients. If EFO(P)
denotes the electric field at P exterior to the waveguide region, which
is radiated by the modes that impinge on the open end, then the

scattering mat rix [512] relates E™ to E; as follows:

e || Is)°]
EPO SPO C+ 2.13
SR RCOREG (2.13)
ro ro
LA B N CAY

where the rim is located at n=0,

E° () = E°x + E;O y+EPC 2 (2.14)
and
ro
(s, ]
[s,,]1 = , [s;°] (2.15)
ro
(s, 1
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Sy3 *+* ] _ (2.16)

where u corresponds to any one of the cartesian coordinates x, y or z,
As explained before, for observation points in the far field, the

scattering matrix [512] can be written as follows:

| Ego ] . e-jkr
Ero = [512] [Cn] r (2.17)
-0 —
where
ro
Sq ]
fq _ ]
£Sy,1 = (7] . (2.18)
¢
OBSERVATION RIM
POINT

P ——

Figure 2,3. Scattering by only the rim at the open end of the
waveguide,

19



OBSERVATION
POINT

JUNCTION

@

Figure 2.4, Radiation and reflection at the open end due to a
waveguide mode incident at the open end.

JUNCTION

®

Figure 2.5. Reflection of waveguide modes at junction(:l
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The scattering matrix [521] describes the transformation or the
coupling of the incident plane wave field into the waveguide modes as

illustrated in Figure 2.3. It is clear that [821] can therefore relate

E; to E) by
— -
) I A?
[C,1 =[S, ] Al (2.19)
with
I s.1
(s,,]1 = 8- . 2.20
21 l s, (2.20)

The present development can also deal with a near zone source Ee
~type illumination, in which case the scattering matrix is defined via

the following relationship:

X o Pe
fc1=10sP1ly-r (2.21)
- n- [ A e
z P
- e_
where
p I - .
and
_Suf—
S
[s,1 = | .2 . (2.23)

Here, u corresponds to any one of the cartesian coordinates.
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It is noted that the problem of determining [52?] is related to the
problem of determining [512] via reciprocity  The precise relationship
between [522] and [S),] is discussed in Appendix I.

The scattering matrik [522] is a modal reflection coefficient
matrix which is associated with the interaction in Figure 2.4, In
particular, the elements of [522] describe the reflection coefficients
associated with the modes reflected back from the open end into the
waveguide region when a mode is incident on that open end from within

the waveguide. Thus, the matrix [522] relates E; to E; as follows:
[c:1 =0s,,1 [c] (2.24)
n' " =220 Sne * -

The scattering matrix [SP1, like [322], is also a reflection
coefficient type matrix which is associated with the discontinuity at

junction(:l Thus, one can write
+ -
[c,1 = [s;] [c,] . (2.25)

As mentioned before, [SP] may also represent a reflection due to a
dielectric loading, or an effective modal reflection at junction(:)which
includes the totality of any other reflection effects arising from the
presence of all of the discontinuities (or junctions) to the right of

junction<:)in Figure 2.2.




At any given operating frequency, the waveguide region can support
a finite number of propagating modes and an infinite number of
evanescent (non-propagating) modes. Therefore, the matrices [512],
[821], [522] and [Sr] are of infinite order in a formal sense. however
one needs to retain only a finite number of elements of these scattering
matrices in practice, because the distance L shown in’Figure 2.2 is
generally large enough so that the infinite number of evanescent modes
generated at junctionC:)do not contribute significantly at junction(:l
and vice versa, The finite number of elements of the scattering matrix
which are retained in practice thus correspond to only the finite number
of all the propagating (or non-evanescent) modes which can exist within
~the waveguide region. If the distance L in Figure 2.2 is small enough
so that the "lower order" evanescent modes become important, then one
must include these "lower order" modes. In either case, in practice,
one always retains a finite number of elements in the scattering
matrices which formally may be of infinite order.

The scattering matrices defined above are combined in a
self-consistent procedure to obtain the field ES scattered from the
open-ended waveguide cavity of Figure 2.2 as follows. For an incident

plane wave E' as defined in (2.2), ES can be written as

S —_— -
Ex AL
Es | = IRy T | A (2.26)
S - ¢_
_.EZ_
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x +Ey+E 2z (2.27)

and [R11] is the effective scattering matrix of the cavity. The
scattered field Esconsist§ of the field reflected from the rim of the
open end, and the field transmitted into the waveguide through the open
end from the incident field at the open end. This transmitted field
undergoes multiple interactions between the junctions(:>and(:)before
being radiated from the open end. Let us represent the modal field in

the waveguide region after taking all these multiple interactions into

account as follows:

+ - - m
" LAy (emt + emn) e . (2.28)

Here, the modal sets are compactly represented by a single index "m" as
before, and [A+] and [A”] denote the amplitudes of the modes propagating
in +; and -; directions, respectively.

As described earlier, one can decompose the scattered field ES of

(2.27) as:
N S— —_——
Ex A;
Ex | = [5y;) AL |+ OS] (A" : (2.29)
S — -
_EZ._

+
9

propagating in +n direction due to the reflection of the modal field set

The vector [A+] represents the amplitudes of the modal field set E

E; with amplitudes [A"] at junction(:l Therefore, one can write:
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[A*] = [P1 [s,] [P] (A7)  (2.30)

where [P] is the diagonal matrix accounting for the propagation phase
delay of the modes err the path length (L).

At junctionC:l the modal field represented by the vector [A7] is
excited by the incident field and the reflection of the modes
propagating in the +; direction from the interior of the open end. This

effect can be represented by the equation:

— -
6
[A"] = [S,,] [A"] + [S,,] o : (2.31)

- Combining (2.30) and (2.31), one obtains

|_AL
[I-SZZPSFP] [A] = [521] Al (2.32)
| PR |
Using (2.32) in (2.30) gives:
‘_Ag_|
+ -1 .
[AT] = [P] [S,7 [P] [1-S,,PS P] [s,,] ‘ AL . (2.33)
Substituting (2.33) into (2.29) yields:
s —_ i
Ex . AL
S — - = -
Ey = {S11 + 512 PSPP 1 SZZPSPP] 521} A; (2.34)
s -
Bl
- Z_
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The matrix in curly brackets is the effective scattering matrix [Rll] as

defined in (2.26), so

[Ry1 = 84,1 + [Sy, PSP [I-S,, PSPP]-I S, - (2.35)

As can be observed from the analysis, [R11] includes the effects of the
presence of the second junction, By this procedure, the self consistent
method can be directly extended to the analysis of waveguide cavities

having more than two junctions.
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CHAPTER III

DEVELOPMENT OF THE ELEMENTS OF THE SCATTERING MATRICES
IN THE MULTIPLE SCATTERING METHOD

In this chapter, expressions for the elements of the scattering
matrices associated with the discontinuities of waveguide cavities shown
in Figure 1.1 are developed using a combination of high frequency and
modal ray techniques. It is noted that there are basically two

mechanisms described by the scattering matrices:
| 1) The reflection mechanism which describes the field reflected
back into a region due to a fiela incident on a discontinuity from

within the same region, and

P T 1~

£2 2.1 A
[} Iciu Luupicu

Z) the transmission mechanism which speci s the

M

into a region through a discontinuity when a field is incident on that
discontinuity from the adjacent region; i.e., from the other side of
that discontinuity. The reflection and transmission type scattering

matrices will be treated separately,

3.1 The Reflection Type Scattering Matrix

The scattering matrices defining a reflection phenomenon is

described by either [511], [522] or [Sr] type scattering matrices. The
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first one describes the field scattered back into the exterior region
due to a field incident from the exterior region, The last two describe
the modal reflection back into the interior region when a waveguide
field is incident from the same interior region onto a waveguide
discontinuity. The exterior region scattering (reflection) described by
the scattering matrix [Sll] is going to be discussed separately from the
case involving interior or modal reflection even though the approach

employed for both cases are very similar,

3.1.1 Reflection Back Into the Exterior Region

In this section, the direct scattering from the rim edge at the
open end expressed by the scattering matrix [511] is calculated using
techniques based on the GTD. According to the GTD, the scattered field
is initiated from some distinct points (diffraction points) on the rim
edge as well as from the corners of the rim (if they exist) as a result
of Keller's generalization of Fermat's principle [11]. In addition to
the single edge and corner diffracted fields, there exist multiply
diffracted fields which are produced by rays that undergo multiple
diffractions across the aperture. These multiple interactions may
become important if the aperture dimensions are not sufficiently large
in terms of the wavelength,

In 2-D problems the open end is formed by the edges at which the
semi-infinite waveguide walls are terminated. Therefore, the scattering
matrix [511] describes the diffraction of the incident field by these

edges. The treatment of multiple diffractions is complicated in the
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situations where one of the edges is in the transition region of the
shadow boundary of the other edge. 1 the unstaggered parallel-plate
waveguide, the edges are exactly on the reflection shadow boundaries of
multiply diffracted fie]ds. In this special case, the diffracted field
can be simply decomposed into its ray optical components so that further
diffractions can be calculated using the GTD [10]. The results of this
procedure agree with the asymptotic expansion of the exact result up to
the second order interaction contributions; for the higher order
interactions, this ray-optical procedure underestimates the asymptotic
result [29]. However, for numerical calculations the discrepancy is
negligible., A formally asymptotic ray-optical analysis is proposed in
[14] based on the uniform asymptotic theory of diffraction (UAT) [303.
| This lengthy analysis consists of decomposing the interaction field into
a Taylor series and applying uniform asymptotic theory to each term in
the series and summing up the results. Another attempt to get an
accuraie muitipie diffraction fieid coniribuiion is described in
[12,13]. In this approach, the canonical problem of the diffraction by
two staggered parallel half-planes is solved and the asymptotic
approximation to that solution is identified as the modified diffraction
coefficient (MDC), which includes the presence of the other edge. Later
on, this solution is extended to non-staggered parallel-plates [15].

In 3-D problems, the diffraction points migrate around the rim edge
as the observation point changes position. In some cases, there may be

a continuum of diffraction points contributing to the scattered field

which produces a caustic of diffracted rays. The GTD predicts singular
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fields at a caustic; therefore in order to get a bounded result, one can
use the so-called equivalent current method (ECM) based on the GTD. The
ECM is valid provided the diffracted fields are fo be found away from
the shadow boundaries. Away from the caustic regions where GTD is
valid, the ECM generally blends into the GTD solution as long as the
waveguide opening is sufficiently large in terms of the wavelength., The
use of ECM also, automatically, but in an approximate sense, takes into
account the presence of the corners at the waveguide opening.

In the ECM, the equivalent currents (ieq and ﬁeq) of the electric
and magnetic type, respectively, are located at the rim, and they
radiate in free space to give the diffracted field as shown in Figure
‘3.1, The strengths of the equivalent currents are calculated indirectly
from the GTD, but since they are incorporated in an integral, they give
bounded results in the caustic regions of the GTD. This definition of
the equivalent currents makes them correct for the observation points
lying on the Keller edge diffracted ray cone [11]. 1In order to extend_
the definition for observation points which are not restricted on the
- Keller cone of edge diffracted rays, it has been proposed to modify the
expressions heuristically in a manner consistent with reciprocity [31].
In the following expressions this modification is included.

The strengths of equivalent electric and magnetic currents are

given by [26]

- -2 E’(rim) ( ~ ~ \ Br (3.1)
Ia°* Do (ws9';8 ,8,a) VK 2 3.1
SREIAT R A R

and
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- 2' . ﬁi(rim) ~ o~ 8% -
Moo= — D (v,4';8 ,6,0) \3k 2' (3.2)
€q Y, /sinEO sinf " 0 !

where ;' is the unitlvector along the edge direction, and YO, k, Ei and
and ﬁi are as defined earlier in (2.2) through (2.5).

The angles (¢, ' Eo and E) are associated with the soft and hard
diffraction coefficients (Ds and Dh) which are present in (3.1) and
(3.2).In particular, these edge diffraction coefficients
Dﬁ (¢,¢'EO,E,Q) in (3.1) and (3.2) are defined for each point on the

rim, and they are associated with a wedge which locally represents the

X
A
3 i

- Z

———

= d2'=Aap
RIM (OPEN END)

Figure 3.1, The equivalent currents ieq and ﬁe at the rim of the
open end. q
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rim geometry., Assuming that Q is any such point of diffraction on an
edge in an arbitrary curved wedge, the meaning qf w,w',Eo and E with
respect to the point of diffraction Q becomes clear from Figures 3.2(a)
and (b) for this wedge configuration.

The soft and the hard diffraction coefficients are given by [11]

_;™/4 m
~ o~ e™d sin g
D (‘JJ,‘JI',B ’B’a) = ~ =
B 0 a Y2mk /sinsosine
- 1 1 - )
T -y F T (3.3
cos 5 - oS Igi‘ COS‘% - €OS w:w

where the parameter a is related to the exterior wedge angle as shown in
Figure 3.2(b).

| Finally, the equivalent currents (feq and ﬁeq) are valid provided
one is observing these sources in directions away from the geometrical
optics incident and reflection shadow boundaries as mentioned earlier.
These conditions are certainly met when one is interested in the
scattering from the waveguide cavity at and near the axial direction.
The radiated electric field is then given by

ijo L o e-ij

=77 J [RxRx qu (2') + Yo R x Meq (£')] — do!

rim

ESO

(3.4)

where §=R§ is the vector pointing toward the observation point from a

source point on the rim.
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B = B, ON KELLER CONE

(a) (b)

Figure 3.2. Diffraction by a wedge. The angles Bo, B, ¥ and ¢' which
occur in the wedge diffraction coefficient.

The use of Equations (3.1) and (3.2) in (3.4) allows one to easily

identify [511]. Thus, one obtains
JkZO j’ A A A l\' , 1|' ‘p lp BO’B a) A Ai_l
S =71 de' ue { RxRx2 -Y 3k 2'8
ue T peim Vs1n8 sing -
-"i =1 .
-jk er'-jkR

. ﬁ . \/—S';D (W ‘l’ Bo’Bsa) ¢—| e
- Xz .
0 Vs1ns s1n8 R

(3.5)
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and

~ ~

Kz, Dg (¥, ¥';8,,8,0)

. T 8“ 1
= Ir ue < RxRxg' -Y L' e
ué rim Vs1nss1n8 -

~ _j -
-jk er'-jkR
D, (¥,9';B .8,
5 ( 6 ) R e

w, bt | B e i |
0 s1nB sing - R (3.6)

with

and u = . (3.7a;b)

Examples:

a) Near field scattering by the open end of a semi-infinite

circular waveguide:

The geometry is shown in Figure 3.3. An incident plane wave is
propagating parallel to the x-z plane (¢i=0) and makes an angle (ei)
with the z-axis. The electric field is evaluated at the observation
point (P), which is radially separated from the origin by the distance
(r) and has azimuth and elevation angles ¢rand 8, respectively. The

'results are plotted as a function of 8 in different azimuth planes
(indicated by ¢r) for different values of r and the radius (a). In the
near field of the rim of the circular waveguide, there can be four
points of diffraction for a certain set of observation points (P) as a

consequence of Keller's generalization of Fermat's principle in the GTD;
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6 Jﬂ'
Z -

P

Figure 3.3. Scattering from the open end of a semi-infinite circular
waveguide.

~ whereas, at other observation points (P) only two points of edge
diffraction on the circular rim contribute to the scattered field. A
direct application of the GTD fails in the range of observation points,
within which such a coalescence of the four points into two points of
diffraction occurs on the rim edge, since the stationary phase

condition is violated as these points coalesce. Typically, such a
disappearance of rays results when three of the four points merge
together, Conversely, one can also experience a transition from two to
four rays diffracted to P, A detailed analysis of the migration of
diffraction points along the rim is given in [32]. 1In such cases where
the GTD fails, the ECM still gives bounded and reasonably accurate
results. In the Figures 3.4 through 3,13, calculations based on the GTD
and the ECM are compared with each other. The comparison gets better in
the regions where the GID is valid for large cylinder sizes; elsewhere,

the ECM is far more accurate.
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Figure 3.4. Near field scattering from an open-ended circular waveguide
using GTD and ECM. __ GTD, --- ECM.
r=5X, a=1x, 0 =45°, ¢'=0, ¢ =0, E =¢'

36




-10.

-30.

-40.

TOTAL FIELD (DB) (NORM.TO PIxAxA)

5’;0. 10. 2'0. | 30. - 'LLIO.I o lSlO.I - IGO.
' THETA (DEGREES)

Figure 3.5. Near field scattering from an open-ended circular waveguide
using GTD and ECM. -+ GTD, --- ECM, )
r=5X, a=1X, 8 =45°, ¢ =0, ¢ =180°, E =4
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Figure 3.6. Near field scattering from an open-ended circular waveguide
using GTD and ECM, —— GTD, --- ECM,
r=5X, a=2X, 0 =45°, 4'=0, ¢ =0, E =4
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Figure 3.7. Near field scattering from an open-ended circular waveguide
| using GTD and ECM. ___ GTD, --- ECM,
r=5X, a=2\, 6 =45°, ¢'=0, ¢'=180°, E'=¢'
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Figure 3.8. Near field scattering from an open-ended circular waveguide
using GTD and ECM. ___ GTD, xxx ECM,
r=10%, a=5, 6'=45°, ¢'=0, ¢ =0, E =4’
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Figure 3.9, Near field scattering from an open-ended circular waveguide
using GTD and ECM. __ GTD, --- ECM.
r=101, a=5A, 8'=45°, §'=0, 4 =180°, E'=p'
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Near field scattering from an open-ended circular
waveguide using GTD and ECM. GTD, --- ECM,
r=10A, a=5\, 8 =45°, ¢'=0, ¢ =90°, E =¢'
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Figure 3.11. Near field scattering from an open-ended circular
waveguide using GTD and ECM. GTD, --- ECM,

r=10X, a=5x, 8'=45°, 4'=0, ¢'=0, 0. Fl- 81
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Figure 3.12, Near field scattering from an open-ended circular
waveguide using GTD and ECM. ____ GTD, --- ECM,

r=10A, a=5\, 0 =45°, ¢'=0, ¢ =180°, E =6
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Figure 3,13, Near field scattering from an open-ended circular

waveguide using GTD and ECM., GTD, --- ECM,
r=10%, a=5), 0'=45°, =0, ¢'=90°, E =5

45



b) Near field scattering by the open end
of a semi-infinite rectangular waveguide:

mi
-

ei

Z .

Figure 3.14, Scattering from the open end of a semi-infinite
rectangular waveguide.

The rectangular waveguide has perfectly conducting infinitely thin
walls, therefore the diffraction coefficients of Equation (3.3) can be

written as follows (a=2)

/4 { sin(y/2)sin(y'/2)
o o~ 2e7d -cos(y/2)cos(v'/2) 1

D. (¥s9',8,,8) = " —— (3.8)
s 0 /27K cosy + COSY V@;:;i;;:;;

For the incident plane wave fields of (2.2) and (2.5) the equivalent

currents can be written explicitly as
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- 4j sin(y/2)sin(y'/2)

. ejksine1(x'cos¢1+y'sin¢1)
cosy + cosy

éq kZ, sinEosinE

(AL cose1cos¢1 - A sin¢1)x for horizontal edges

. ¢
. . . : : 3.9
(A; cose1s1'n¢1 + A; cos¢1)y for vertical edges (3.9)

and

- 4j cos(y/2)cos(y'/2)
cosy + cosy'

jksing'(x'cos¢ +y'sing')

eqd sinEosinE

-(AL s1’n¢1 + A; cose1cos¢1); for horizontal edges

. - . . N 3'10
(A; cos¢1 - A; cose1sin¢1)y for vertical edges . ( )

The equivalent currents, I and ﬁeq are located on the rectangular

eq
rim with the dimensions "a" and "b" as shown in Figure 3.14,

The angles Eo, E, ' and ¢ in (3.9) and (3.10) are determined as

foiiows;
2 2 §.1/2 )
~ (1-s1n 8 cos ¢ ) ; for horizontal edges
0 (1-sin"8' sin"¢') ; for vertical edges
2 2 172 )
~ (1-sin o cos ¢) ; for horizontal edges
sing = 2 2 (172 (3.12)
(1-sin” 6 sin ¢) ; for vertical edges .
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The angles y' and ¢ are measured from the inner faces of the waveguide.

i
cos®
cosy' = - = (3.13)
sinB
0
cos 6
cosy = - po .
(3.14)
sing

The scattered field at point P with spherical coordinates (r,6,4) due to

these equivalent currents is given by

A h v
e[Ee(y1+yz)+Ee(61+62)]

ES a:(nsinE;sinEYcosw+cosw')F)-l

~ reh v
+ [E¢(Y1+yz)+E¢(61+62)] l (3.15)
where
. = ejkbsine151n¢1 ja e-jk/r2+b2-2rx'sinecos¢-2rbsinesin¢+x'2
1 .
0 . .
. oJkx'sin6 cos¢
e dx (3.16)
a -jk/r2-2rx'sinecos¢+x'2 + jkx'sineicos¢i
Yy = [ e dx' (3.17)
0
5. = ejkasine1cos¢1 fb e-jk/r2+a2-2ry'sinesin¢-2rasinecos¢+y'2
1 . .
0 . N B
. eJky'sme sing dy" (3.18)
b -jk/r2-2ry'sinesin¢+y'2 + jky'sineisin¢i
§,=/[ e dy' (3.19)
0
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and

EN = S°A cosecos¢ + C+B sing - (3.20)
E; = SeD cosBsing + C+E cos¢ (3.21)
E: ==SeA sing + C+B cos¢ (3.22)
51 = SeD cos¢ - CeE sing | (3.23)
in which
S = sin(y/2)sin(y'/2) (3.24)
C = cos(y/2)cos(y'/2) (3.25)
A = A; coseicos¢i - Al sin¢i (3.26)
B = AL sin¢i + Al cosei cos¢i (3.27)
D = AL cosei sin¢i + Al cos¢i (3.28)
E = Al cos¢i - Al c0561 sin¢i . (3.29)

The result in (3.15) can be simplified if r>>a,b, in which case the
integrals can be approximated by Fresnel integrals. The numerical
results for the scattering from the open end of a rectangular waveguide

are presented in [33] and compared with the Fresnel approximations.
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3.1.2 Modal Reflection from an Interior Discontinuity

The scattering matrix which describes the modal reflections due to
a junction inside the wayeguide is examined here using ray optical
techniques.

In the ray optical procedure, the incident mode is decomposed into
ray-optical components, and the GTD is used to determine the field
diffracted by the junction. These diffracted fields then excite the
reflected modes. The computation of reflected mode amplitudes has been
discussed in [10] for the parallel-plate waveguide geometry using image
theory. However, this procedure is difficult to apply to other
geometries which lack analogous symmetry properties. In order to
overcome this difficulty, it is proposed here to make use of an
equivalent current approach to get the coefficients of reflected modes,
which, in the case of parallel-plate waveguide gives the same result as
in [10]. The proposed procedure can be easily generalized to other
interior waveguide discontinuities as long as the diffraction
coefficients for the discontinuities are known.

Basically, the procedure requires that the modal field expressions
inside the waveguide sections can be given a ray interpretation. Such a
ray interpretation of the modal fields for some waveguide geometries in
terms of the so called "modal rays" is shown in the Appendices. Some of
these modal rays are illustrated here in Figures 3.15 through 3.19. For
example, each mode in a parallel-plate waveguide corresponds to two
plane waves which propagate in the modal ray directions as shown in

Figure 3,15, Likewise in the case of the rectangular waveguide, each
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y MODAL RAY DIRECTIONS
(NI A 7, . mmIy A Bnm
#( 0) 7 ( wp) Y+
b
W
- —>©
:\h
X

Modal rays in a rectangular waveguide,
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Figure 3.17. Modal rays in a circular waveguide.
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Figure 3.18. Modal rays in a 2-D linearly tapered waveguide.




WHISPERING GALLERY

CAUSTIC CIRCLES

Figure 3.19., Modal rays in a 2-D annular waveguide.

mode is decomposed into four plane waves (or modal rays) propagating in

the directions:

A nm. mr., ~ Bnm -

rom =t (k@) x 2 (kB) ¥ + % 2 . (3.30)
In a circular waveguide the modal ray picture that is employed in this
work is shown in Figure 3.17. Each mode consists of two conical modal
rays which are converging and diverging at the axis of the waveguide.
Linearly tapered waveguide modes in the 2-D case can be interpreted in
terms of modal rays bouncing from the two walls. The ray trajectories
are tangent to the circular modal ray caustic whose radius is determined

by the mode index as shown in Figure 3.18, It is noted that modal ray
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representation is valid only in the region outside the circular modal

ray caustic. The 3-D sectoral waveguide modal rays are similar to the
2-D linearly tapered modal rays, but due to the existence of the third
dimension the ray trajectories are also oblique to the parallel walls
(see Figures C.2 and C.3'in Appendix C). Lastly, the ray interpretation
of 2-D annular waveguide modes is desribed in Appendix E, and they
include trajectories bouncing from both walls, as well as from only the
outer wall associated with the whispering galiery modes, as depicted in
Figure 3.19,

In order to describe the ray optical procedure which makes use of
the above modal rays, let us assume that a waveguide section represented
by A is connected to another section called B, through a junction J, as
illustrated in Figure 3.20. For convenience, an orthogonal curvilinear
coordinate system (n,y,£) is assumed in which the Helmholtz equation

is separable. Furthermore, let the coordinate n coincide with the

JUNCTION

(e0) (:)4

Figure 3.20. A waveguide junction J between two sections.
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propagation axis of the waveguide section A; it is also assumed that the
modal field expressions are orthogonal over the waveguide cross-section
described by the coordinates transverse to n.

The modal fields in region A propagating through the junction will
undergo diffraction at the junction and give rise to a set of reflected
modes in region A which then propagate away from the junction. The
relationship between the reflected and incident mode amplitudes is
expressed by the reflection matrix [Sjp]. The fields entering back into
the section A as reflected modes are produced entirely via edge
diffraction of the incident modal rays. Let the nth modal field
incident at J be represented by

-4 - - -JB.n
E. = (E, + Enn) e (3.31)

| where, as before, a compact index "n" is used for double modal indices
and Ent is the transverse component of the incident electric modal field

- -jB8 n
vector; whereas, En is the axial component. Also, e " denotes the

propagating in the (£n) direction.

Let the ray-optical part of the incident modal field undergoing
+ o+
op,ni® (Note that Eop,ni
is the part of the incident field which is polarized perpendicular to

diffraction at the junction be represented by E

the ray trajectory). As explained before, there might be more than one
modal ray “incident" at a point of discontinuity on the junction for a
given mode; therefore, the index "i" refers to any one of the "incident"

th

modal rays associated with the n” mode. For example, in the
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parallel-plate waveguide only one of the two modal ray plane waves is
"incident" at the upper or lower edges, therefore, i=1 in that case. On
the other hand, the four plane wave ray fields in the rectangular
waveguide are also made up of a pair of rays that propagate toward each
of the four edges as we1{ as a pair of rays that propagate away from
those edges. Thus, out of the four modal rays, there exists only one
pair of modal rays which become "incident" at a given edge; therefore,
the index "i" goes from i=1 to i=2. In the case of a circular
waveguide, only the axially divergent modal rays are incident at the rim
edge, so the index "i" takes the value 1. The modal rays in the 2-D
linearly tapered, and in the 3-D sectoral waveguide are similar to
parallel-plate and rectangular waveguide modal rays, respectively;
therefore, i=1 for the linearly tapered waveguides, and "i" goes from
i=1 to i=2 for sectoral waveguides. Finally, the situation in an
annular waveguide is clear from Figure 3.19, where the index i=1 is used
in the case of modal rays that bounce from both walls because there is
only one modal ray that is incident on the discontinuities at inner and
outer shells, respectively; however, for the whispering gallery modes,
there is no modal ray incident at a discontinuity on the inner shell
(and i=0 in the inner shell) and there is only one "incident" modal ray
for a discontinuity on the outer shell (and thus i=1 for the outer
shell). The corresponding "incident" ray optical magnetic field is

calculated from:

}'_'|+

3>
x
mi

=Y

op,ni 0 ni op,ni (3.32)
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where ; . is the unit vector in the direction of propagation of the 1th

ni
th modal field.

"incident" modal ray associated with the n

As in the calculation of [Sll]’ the ECM will be used to determine
the entries (or elements) of the reflection matrix [SAA]. According to
the GTD, the diffracted field at a point P, which as shown in Figure
3.21 is produced by the diffraction at a point Q located at the

discontinuity is given by

N ~ A ' ~ ~
cd - F o+ ~ ~ .
ET(P) =2 Eop,ni (Q)+[Bypi B Dy (¥,55¥38,n5+8,2(Q))
al - 1 ~ ~ p _-k
+ 95 ¥ (v 38 18,0(0))] /5Tsrpy e (3.33)

where a total of N "incident" modal rays are assumed to exist for the

nth mode. The diffraction coefficients Dﬁ and the angles of incidence

A A

Al

and diffraction are defined as before. The unit vectors Eoni’ E, ¢ni

JUNCTION

O

Figure 3.21., Diffraction of modal rays at the junction discontinuity.
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and ¢ are in their respective increasing angle directions. The distance

from Q to P is shown by s, and p is the caustic distance for the

diffracted rays as described in [26].

The diffracted field of (3.33) may be viewed as being generated by
equivalent currents located along the rim of the discontinuity if p>>s,
However, the equivalent currents in this case will be assumed to radiate
in the presence of a waveguide obtained by the geometric e*tension of
the walls of section A, as shown in Figure 3.22. It is noted that the
equivalent electric edge currents would be shorted out if they were to
radiate in the presence of the waveguide walls. Therefore, in the
present work the equivalent edge sources are only of the magnetic type,
and they radiate within the waveguide. This is different from the
previous works which employ equivalent electric and magnetic line
sources in free space [10,14].

The equivalent currents are equivalent magnetic line sources and

magnetic line dipoles given by [34]

~

Dh(‘,i;n ,‘P;Bon.i ,B,G(Q))

N_. ~N 1 B - A
M, (Q) =.21M;(0) 't ¥y VIR (Hp 1ie2')
i= = ’

i=1 2 /§1n80ni sing
(3.34)
and
- ) N - N 8TT (_ + N Ds(lpn-i ’w;BonisB,G(Q))
M.(Q =z2M(Q) =z -\/3%r (E Lo g == =
d j=1 d i=1 JK LZop,ni 2 |sinyl @nsoni ine

A A A 2 A A A A
‘[0 V1-(8'er ;) + mxn(s'er ) cosy] (3.35)
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where &' is the unit vector along the rim of the junction and n is the
unit vector normal to the walls of the uniform waveguide of Figure 3.22
at the junction () and pointing into the waveguide region, The
derivation of the expression for equivalent magnetic line dipole is
included in Appendix J. The factor 1/2 is included in the expressions
since the equivalent sources are radiating in the presence of waveguide

walls.,

- @
// /
“
41"”?f‘;l" -
\‘ - ﬁg‘ _ - -
T \
- A JUNC TION
® Q EXTENSION OF
| SECTION A

Figure 3.22. Excitation of modes by equivalent sources ﬁz and ﬁd‘
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The excitation of the modal fields due to these sources can be
obtained by employing the usual reciprocity theorem as described in
Appendix G, However, this method must be employed here with a slight

modification because of the use of "equivalent" currents ﬁz and ﬁd which

excite the modes; that modification is consistent with reciprocity and

so requires that the excitation of the qth

mode with modal ray angles
¢q1(1=1,...,N) is due only to the rays diffracted in those directions.
Therefore, in the expressions for the equivalent sources of (3.34) and

(3.35) appropriate angles are used to obtain:

~ ~

Dh(*br'n ”J’q.l ;BOHT' ’Bq'l ,a(Q))

LB s s

- LN
M (Q) =2vl E Y k (H ..2I) = —
* i2p ‘0 "Ik op,ni : :
i ? /S'lnsom. S1n8q‘i
(3.36)
and
- N Br =4 - Ds(“’ni’*qiiﬂom’sqi’“(0))
"al0) - 'El i 3F-(Eop,ni'2 ) 2 Isi fo —=
i= |s1ani| sinBoi STNBy;
~ A' ~ 2 A A A' A~
fIn Vi-(atergg) + mxnateryy ) cosyg ] (3.37)

Applying the result in Appendix G, one then obtains the expression

for the reflection coefficients as follows:

. =+

R = - - [ H < (M +M)) de'  (3.38)
qn * 0 o4 2 d )
2 é[ eq X Hqt nhY hg dyde rim
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E
and £ coordinates, respectively, and S is the cross sectional area of

where hY and h_ are the metric coefficients (scale factors) for the vy

section A.

h

The reflection coefficients above give the qnt element of the

scattering matrix [SAA].

The result in (3.37) can be improved for small guide widths by
including the effects of multiply diffracted rays at fhe aperture of the
junction; that effect can be incorporated as an additional term in the

above expression [10].

Examples;

a) Modal reflection at the open-end of a parallel-plate waveguide:

Figure 3.23, Open-ended parallel-plate waveguide.
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Following the analysis presented in this section and the modal
field expressions given in Appendix B, one finds that the reflection
coefficients relating the amplitude of the qth reflected mode to the

amplitude of the mth incident mode are explicitly given by

i) TMz case;

_jw/4
V21|'k e m+ ~ T~ T
= - q =5, 8=%
am 2 ‘/BmB { ( 1) Dh(am’aq’so s B ,0.1)
q are_ ¢
om 0q
-j(8 +8_)d ~ T~
m
te d Dh(ém,sq,80#2,8=7,a2) } (3.39)
where € -, B, and Sy for the nth mode are as defined in Appendix A and

the angles o, and a, are shown in Figure 3.23. Also shown in the

figure are the waveguide width (a) and the staggering distance (d).

ii) TEz case:

_jﬂ/4
2k e - m+ ~ W~
- q == B=
am - "2 /By ° | (170 (8284284258720
-j(B +8 )d ~ m~T
ve 00 (5,8,8,77,87 %) (3.40)

The results in (3.39) and (3.40) agree with that obtained in [10] via a

different procedure.
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b) Modal reflection from the open-end of a rectangular waveguide:

The geometry and the modal field expressions are presented in
Appendix A, The elements of the reflection coefficients which relate
the pqth reflected mode amplitude to mth incident mode amplitude are

calculated via (3.38) and given explicitly as follows:

r“‘*[1+ 1)n+p][1+( 1)m+q] NnmNquanpq

pq nm o

a an -

: : D sh )V Vo (1-8
/s1n80hs1n8h h(wh 1"h) nm pq( no)

2, 2
' YoUnm P+ quPa —

+ D (v,¥) o (e W sing,_ - cosy, )

s''h*"h YomSinw, " on'pq qu h k h

meq

* /gfnsovsinsv [0, (v, ¥, ) nm pq(l_smo)

z, 2
YoVom Pa*dy Unqb
+ D (V%) ¥ cing (Eqm¥ sing, - cosy, )]
sty Ty Ynmsmq;v om pq qu v k
(3.41)
where
R ey
D (¥,¥') = S5 [sec(5) # sec(5)] (3.42)

h
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2.1/
sing, = [1-(na/k) ]

2 1/
sing, = [1-(pa/k) ]

2 1/2
sing, = [1-(qb/k) ]

cos(v,) =

cos(y,) =

p¥q
P=q

n=Q

n£0

2_1/2
sing,, = [1-(mb/k) ]

Bnm/k

sinsOh

B [k
Pq

sinsh

Bnm/k

s1n30v

k
qu/

S1n8v
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(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)



™ for TE__ mode
= @ nm - (3.53)
nm -m for TM__ mode

nm

‘mb for TE__ mode
nm

—_— (3.54)
—pa for TMnm mode
-1 for TE__ mode
W= | nm (3.55)
0 for TM__ mode
— nm
m
Pa = BE (3.56)
™
qy, = gB’ (3.57)

Nnm’ Ynm’ Ny and m, are as defined in Appendix A.
The result in (3.41) is plotted for different incident and

reflected mode values by Dr. C.D. Chuang of the Ohio State University,
ElectroScience Laboratory and presented in [35]. Some of those results
are shown in Figures 3.24 and 3.25. In Figure 3,25, the calculation is
compared with measurements [36]. In this case, the waveguide dimensions
allow only the.dominant TE10 mode to propagate. It is noted that, even
though at such low frequencies the neglected multiple order diffractions
at the open end become important, the comparison between the measurement

and calculation is quite reasonable. One would expect the comparison to

get better as the frequency increases,
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c) Reflection of TEjp mode from an E-plane circular bend in a

rectangular waveguide:

Figure 3.26, Junction between a rectangular waveguide and a circular
bend of rectangular cross section,

The dimensions of the rectangular waveguide shown by "a" and "b"
allow only TEjg mode to propagate. This rectangular waveguide is joined
to a uniform circular bend of rectangular cross section, as shown in
Figure 3.26. The mean radius of the circular bend is shown by R. In
this case the edge diffraction coefficients in the expressions for
equivalent sources given by (3.36) and (3.37) will have to be modified,
because the diffraction is now due to a discontinuity in the radius of
curvature as shown in Figure 3.26. One can employ the diffraction

coefficients presented in [37] for this case; they are expressed as

c sn/4 ?
Ds(vy,v,) = e V7 (F%6) (3.58)
h

follows:
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Figure 3.27, A discontinuity in the radius of curvature,
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where

ag-a;  l+cos(vi+vy)
F = <77k Tcosvitcosva)d (3.59)

and

ag-a;  l+cos(vy-vp)
"2k Tcosvi+cosvy)3 . (3.60)

[op]
[]

In (3.59) and (3.60), a, and a, refer to the curvature of the surfaces
which make up the discontinuity, vl is the angle of the incidence and
v, is the angle of diffraction, measured from the tangent direction

(;—direction) as shown in Figure 3.27.

The expression in (3.41) for the reflection coefficient can be
applied here together with the diffraction coefficients of (3.58) to
calculate the reflection of the TEyjg mode. This calculation is done and
plotted in Figures 3.28 and 3.29 (denoted by GTD) as a function of
radius R for two different values of the waveguide height "b"., This ray
optical result is found to be independent of the waveguide width "a" and
is not varying appreciably with the value of "b" for comparably large
values of R, A result based on the variational approach for the
equivalent circuit parameters is presented in [38]. The approximate
reflection coefficient based on that approach in [38] is also presented
in Figures 3.28 and 3.29. That reflection coefficient is likewise very
insensitive to the dimension "a" for the selected range of parameters,
However, its magnitude increases rapidly with the dimension "b" which is

unexpected based on the physics of the problem,
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Figure 3.28. Reflection coefficient for the TE10 mode in a rectangular
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d) Modal reflection from a junction between two linearly tapered
waveguides:

(2-a,)7
~«——EDGE (D

~~~=  EDGE
nih MOOE ®

Figure 3.30. Junction between two linearly tapered waveguides.

The reflection coefficients for this 2-D configuration can be

determined employing the modal field expressions of Appendix D in

{3.38). The amplitude of the qth reflected mode due to an nth incident

mode is given by
i) TEyx case:

Y 2wk e'-jﬂ/4 -

1)q+n D (8qpys O1q} By=s B=T
R =
gn /eon 80q 2¢0

757
'/Bn("l)sq("l) P1

'j(Bn(pz)"’Bq(pz))92+j(8n(pl)+8q(pl))pl

e ~ T ~T7
+ 8,8, 3B =7,8=%
I CATH R B On(®an2 0238072622 %)
(3.61)
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-3(8.(p,)+8_ (p,))p,+i(8 B,(p;)
o J( n(pz q pz )pz J( n(pl)+ q(pl )pl

+ .
@(OZ)BQ(O?_) pz s'2n’ 2q’ 0

In (3.61) and (3.62), the parameters €n* Bn® %o and pysPy are defined
in Appendix D, The angles a, and a, are determined from the wedge
angles as shown in Figure 3.30, and the modal ray angles eln and 62n for

the nth mode is calculated via the expression given in Figure D.2, for

edges ® and @, respectively.
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e) Modal reflection from the junction of two sectoral waveguides:

(2-a,)r

Figure 3.31, Junction between two sectoral waveguides.
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The modal field expressions have been given in Appendix C for TE,
and TM, type of modes. The ray interpretation of these modes is also
discussed in the same appendix. The reflection coefficients are

presented below for TEy, and TMy incident modes.

i) TEx case:

In order to excite the pqth reflected mode, equivalent magnetic
line sources due to an incident nmth mode are located at edges<:)and(]

and they are given by

i Yotk H{EDT ey

1
Koy Bom(ey) ‘ 2 (e
2 2 -

=1
°
—
1]
> >
ne~InN
<
o
e [22)
H

-J Bnm(pl)pl+ jBnm(pl)pl
s 2 2

2 P ?
4.J .

X X .5
Dh(elnm’e%pq’sn’B »a1)

(3.63)

The upper characters correspond to edge(i)and the lower ones give the

value of the equivalent source at edge(:l as illustrated in Figure 3.31.

th X

1nm
in the diffraction coefficients are determined via the expression given

The modal ray angles (corresponding to nm~ mode) 6 and °zﬁm present

in Figure C.2 for edges(:)and(:l respectively. Finally, the acute angle

nm
B, 1S determined using cosg = k3 .
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The amplitude of the reflected pqth mode due to an nmth incident

mode is obtained as follows:

= Vie-ghe Vike- (B
qu,nm - V2ik  x /e an(lnsno)

on€om®opoq %o

|_} 1)q+m h(elnm 9lpq B B ’“1)

/8 z 58 (015

e-j(Bnm(p2)+epq(p2))p2+j(snm(p1)+qu(p1))p1
+

X ) S
h(62nm’92pq’8n’B ’“?)

(3.64)

/Bnm(pz)qu(pz) Py

ii) TMy case:

In this case, the equivalent magnetic line dipoles are located at

edges ® and @ and are given by:

. nr o fe-nym RN
: 2 JBx Lom k2-(3)2%) L(-l)} ami Py r(a)x{i-1)
d1".§13TJE Bon(P1) Py 2 ® 2 2

o
D ( 1nm? 1pq’B B ’al)

2 2 ~ m ~ m
o BV R cosef ) (3

4 sing

%pq

For the modes away from cut-off, the ; component of the magnetic

dipoles are small compared to the radial (;) component. Therefore, in

the calculations it is assumed that the equivalent line dipoles have a

th

radial orientation and excite a pqg- reflected mode due to an incident
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nmth mode. It is noted that the equivalent currents of (3.65) can

excite a TMx mode as well as a TEx mode. Therefore, the reflection

coefficient corresponding to a pqth type TMx mode will be represented by
th

ng nm’ whereas the reflection coefficient corresponding to a pg~ type
TEx mode will be represented by Rg: nm® The explicit expressions for
L]
ee he . '
qu,nm and qu nm 2re presented below:
/ k2- (——)2 an €on
Ree 8 g_ a
pg,m = ~VIK % \/k2 (52 "€onfomopfoq %o
- oX
D ( 1nm?® lpq ’ B B ’ al )

(-1 B (01)B.,(pq) 0§ sineX
B V/inm P1/Ppq'f1 1 1pq

-J ( Bnm(92)+qu(pz))92+j(8nm(91)+j qu(pl))pl X

+ € s ean 2pq 8 B ’“2)
\/Bnm(pz)qu(pz) o5 sino% . _
(3.66)
o, am
Rhe L 2 kz-(a_)z 5
- \/ e .
! k¢oVEon€om€opeoq V&Z-(gz;; npon
B 5q(P1) P (%1ms SlpgiBpsByroy)
( 1)m+
- T
|— 2 S1nelpq Vﬁnm(pl)qu(pl) 1
+e’j(3nm(°2)+3pq(°2))°2+j(Bnm(°1)+3pq(°1))°1
Bog (p)0 (0 2nm 2pq’B Bp’“z) \
(3.67)
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f) Reflection from the open end of a circular waveguide:

The geometry of the circular waveguide is shown in Figure 3.32,
The modal expressions and their modal ray interpretation are left to

Appendix F,

i) TEz case:

The equivalent currents ﬁz and ﬁd at the rim of the open end

excite TEz and TMZ modes. The reflection coefficient corresponding to a

ee (Rhe ).

reflected TEZ (TMZ) mode will be represented by qu,nm pq,nm

They

are given by

pqlﬁ MODE

Figure 3.32. Open-ended semi-infinite circular waveguide,
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where

t [
kI, NqunmJn(qu)an(pnm)

ee _ .
pg;nm  j4a c056pq + cossn [np COSc_Spq coscnm f
k2 2 ) .
-kaey, §1n6pq s1n6nm.g] Snp (3.
2 ' .
he k Nqu"anﬂ(qu)dn(an)

Pq,nhm = JI cos$ + Cossnm [Cosépq s1n6nm of

Pq .
+ s1n6pqcossnm-g]
(3-
= cos = cos =~ [142 (secs o + secs ) 1-AD) (3.
g *m AC
= sin = sin [1-2 (secspq + secs ) 1-AC] (3.
-j(2ka-r/4)
n e
= (-1) 3.
4/vka
] . 2 »
=1+ ¥ (jB)/ Ve+l (3.
£2=1
® 3
=1+ ] (-3B)7/ /¢l (3.
2=1
nl _joa
=(-1)" 7e . (3.
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It is noted that the effect of all the multiply interacting rays
across the aperture are included in the above expressions for the
circular waveguide opening; in particular, that information is contained

in the "f" and "g" terms given above,

i) TMz case:

Similar to the TEz case, the reflected modes may be TMZ or TEZ
type. The reflection coefficient corresponding to a reflected TMz (TEZ)
hh (Reh ). The expression for REN

pq,nm Pq,nm Pg,nm
is the same as (3.69), namely;

mode will be represented by R

eh he

= R 3.76
Roa,nm = Rpq,nm (3.76)

and
" kY NqunmJn(P )are ) -
e = T Tk a 7 sing&  gind «f
pq;nm  jéa c055pq + cosé on Pq nm
2
-n cosspq cossnmog] an (3.77)

The results in (3.68) through (3.77) are compared with the exact
Wiener-Hopf solutions for various modal reflections at the open-end of a
circular waveguide. The comparisons are shown in Figures 3.33 through
3.35. The ray-optical solution closely approximates the exact solution

especially at higher frequencies.
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Figure 3.33. Modal reflection coefficients due to an incident TEpj mode
in an open-ended circular waveguide.
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g) Modal reflection in an annular waveguide terminated by a

parallel-plate waveguide:

!

E

nlondndnknnlndendondond okl £

EQUIVALENT SOURCES<\

AR A 4u gy av o 4

Figure 3.36. Junction between parallel-plate and annular waveguide
sections.

In this example, the reflection coefficients corresponding to
annular waveguide modes are derived by considering the discontinuity at
the junction between an annular and a parallel-plate waveguide as shown
in Figure 3.36. The annular waveguide has outer and inner shell radii
shown by "a" and "b", respectively. The polar coordinates p and ¢ are
used to define a point with respect to the center of the annular
section. The goemetry is assumed to be infinite in ;-direction, and in
this example only the reflection of TEz modes will be considered. The
treatment of TMZ modes follows similar lines. The modal field

expressions in the TEZ case are obtained from a magnetic field given by

- . -3v |4}
B =32 A" (ka,kb) fM(kp)e = M (3.78)
n n n
so that
-4 A 1 a -4 o] 1 a =4
t _ —u* _ e T o
En =P 3ke v, 20 M T tGky, By - (3.79)
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In (3.78), the function f:(kp) is given by

ko) = HE (ko) | WL (ko)) (ko) | (2 (i) (3.80)
n . n

“n “n
p=b p=b
where the primes denote differentiation with respect to the argument,

and the vn's are determined from

h
dfn
d | =0 . (3.81)

p=a

The normalization factor A: (ka, kb) is used in (3.78) such that

for-a propagating mode one obtains

a . -
[ OE x () do =1 . (3.82)

N

b

To determine the normalization constants, one can generate the Green's
function as done 1in Appendix E for TMZ polarization. Alternatively, one
can also use the following identity [39]:

kp 1" W'

d
[ W (ko)W (ko) 5= = 2= W, 3y -, 3, (3.83)

where w,(kp) and W,(kp) are combinations of cylindrical functions (i.e.,
Bessel, Neumann, or Hankel functions) of order v and primes denote

differentiation with respect to the argument.
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The equivalent magnetic line sources for the excitation of the gth
reflected mode are located at E and E' of Figure 3.36 and their values

are given by

(1) (2) 0.y
h -H kb) H'4/(k
. . [_._l JE An (ka,kb) 1 v (kb) Y (ka) .
2 Vi Vi 2 2

L - - (3.84)

where DE is the diffraction coefficient for the discontinuity in the
radius of curvature (such as the one in (3.58)), and the incident and
~reflected modal ray angles are as determined in (E.31) and (E.34)., The
subscript 1 or 2 is relevant to the equivalent source at edge () or (2)of
Figure 3.36, respectively.

The reflected qth mode is obtained from (3.38) such that

1 /8 :
Ryn = <75 Y3k Ah A" [f2(ka)H£;) (kb)Hii)(ka)Dﬁ(aln,slq)
h 2)" (1)
-fq(kb)H&n) (o)H ]} (KD)DE (85008,0) ] X (3.85)
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For whispering gallery modes, the line source Mzz corresponding to
the discontinuity at edge(:)on the inner circle (of radius=b) has to be
discarded since the whispering gallery modal rays do not illuminate this
discontinuity. Therefore, the general expression for the reflection
coefficient in (3.85) reduces to the following for whispering gallery
(WG) modes:

WG 1 8T

o1 /8 h ch (1) (2) c
Ran = “T¥p V3K Ay A fo(ka) Hy (kb)an (ka)Dy(8)5814) -

(3.86)

The result in (3.86) for the magnitude of the reflection of a
whispering gallery mode is plotted in Figure 3.37 as a function of the
radius "b" while keeping (a-b)=0.4x (wavelengths). The diffraction
coefficient of (3.58) is used in the calculation. For the range of
radius "b" shown in Figure 3.37, it is found that the only propagating
mode is the whispering gallery mode. The modal ray direction of the
whispering gallery mode was sufficiently away from grazing (more than 20
degrees); therefore, the diffraction coefficients of (3.58) could safely
be used. One observes that the amplitude of the reflection coefficient

decreases as the radii of inner and outer circles are increased.
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3.2. The Transmission Type Scattering Matrix

The scattering matrices [Sy»] and [Sp;1 characterize the
transmission of the field through the open end by relating the
coefficients of modal field inside the cavity to the amplitude of the
exterior field. One may also encounter the transmission of modal energy
from an interior region to another adjacent interior region through the
junction between them. These transmission mechanisms are discussed
separately in this section.

In order to obtain expressions for the transmission coefficients
one may be tempted to use the GTD equivalent currents employed in
calculating the reflection coefficients. However, it is noted that the
GTD equivalent current concept fails at and around the geometrical
optics shadow boundaries where the diffracted field is not ray optical.
This was not a problem in the calculation of reflection coefficients,
because the incident and reflected modal ray angles were away from the
shadow boundaries for the modes not close to cut-off., However, in the
case of transmission through a junction, the modal rays corresponding to
the transmitted modes may be close to the shadow boundaries of the
incident modal rays, and their associated reflected modal rays, at the
discontinuities. Therefore, to obtain the transmission coefficients,
one can integrate the incident modal field across the aperture as in the
Kirchhoff-Huygens' approximation for aperture integration (AI).

Although the asymptotic evaluation of this integral gives some end point

contributions to account for the edge effects, they are not as accurate

as predicted by the GTD [40]. Therefore, in this section a modification

of the PTD presented in [26] will be employed to get a proper correction
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to the edgé effects predicted by the Kirchhoff-Huygens' approximation.
The PTD approach discussed in [26] modifies the original PTD developed
by Ufimtsev [27] by employing equivalent currents to refine the
approximate physical optics (PO) integral for the fields scattered by a
conducting body. These equivalent currents are again placed at the
edges of the scatterer, and their expressions are similar to the GTD
equivalent currents as in (3.1) and (3.2); however, the GTD diffraction
coefficients Dg are now replaced by Ufimtsev diffraction coefficients

h
DE which are given by;

. (3.87)

In (3.87), Dgo is the PO diffraction coefficient obtained from the

~ asymptotic end-point contribution of the PO integral. Therefore, the
PTD, in this format, requires an integration of the geometrical optics
(GO) currents over the surface of the scatterer (which is the PO
approximation) and another integration of the lifimtsev type equivalent
currents over the edges of the scatterer. The latter tends to correct
for the incomplete edge effects contained in the PO approximation., The
important property of the Ufimtsev type equivalent currents is that,
unlike the GTD equivalent currents, they can be employed for observation
points in the transition regions of the shadow boundaries. It is noted
that when the result of PO integration is identically zero, then
Ufimtsev diffraction coefficients have to be replaced by the GTD
diffraction coefficients. One thing still remains to be shown; namely,
the same Ufimtsev type equivalent currents employed to correct the PO

approximation for the scattering by a perfectly-conducting surface with
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an edge also corrects the incomplete edge effects contained in the
Kirchhoff-Huygens' approximation for the Al considered in this work,
This is done in Appendix H where it is noted that the Kirchhoff-Huygens'

integral basically plays the same role as the PQ integral.

3.2.1. Transmission Between Exterior and Interior Regions

The interior to exterior coupling is the result of tﬁe radiation of
modal energy from within the waveguide to the external free space region
through the open end, and it is described by the scattering matrix
[512]. The reciprocal problem of transmission into the waveguide region
via a coupling of the exterior field incident at the open end is
characterized by the scattering matrix [Szg]. As might be expected,
[Szg] can be directly related to [512] via reciprocity; this relation is
discussed in Appendix I, and [812] will therefore be found here directly
from [Szg].

The scattering matrix [521] describes the transmission or coupling
of the incident plane wave field into the waveguide modes as illustrated
in Figure 2.3. [521] is defined in (2.19).

For later convenience, let the waveguide excitation be an electric
current moment dﬁe which lies at the point P in the region exterior to
the waveguide as shown in Figure 3.38. [52?] will be developed here
for estimating the coupling of the fields of the exterior source dﬁe
into the interior waveguide region, via the open end. This more general
situation reduces to the special case of plane wave incidence on the
waveguide opening as in Figure 2.3 if the source dﬁe is allowed to

receed to infinity.
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a) Part of [S, 1 due to coupling of the direct field of dﬁe
through the aperture.

b) Part of [521] due to diffraction correction from the rim.

(=0 PLANE)

c) Equivalent problem.

Figure 3.38. Geometry associated with [521] calculation.
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The field E_ which is coupled into the waveguide region by dp, in

Figure 3.38 may be expressed as in (2.11) by

- - = = +ig,n - -
By = : C, (Ent-Enn) e = ﬁ Cn En (3.88)

The associated magnetic field ﬁ; is likewise given via (2.12) as

- .- - +ig.n
H =z C (-H_ +H ) e =3 C
n

; H; (3.89)
The modal coupling or transmission coefficients (C;) in (3.88) and
(3.89) may be found from the equivalent problem in Figure 3.38(c) which
illustrates an equivalent surface and line source distribution at n=0
Within an infinite waveguide which is a geometric extension of the
semi-infinite waveguide of Figure 3.38(a,b). The equivalent sources in
Figure 3.38(c) generate the same fields in the waveguide region as those
in Figures 3.38(a) and (b) if the equivalent sources are found exactly,
as described in Appendix K. Here, the equivalent sources are determined
from asymptotic high frequency techniques so that the field coupled into
the waveguide are approximations to the true fields therein. These
approximations are high frequency approximations which are expected to

work well even down to the lowest propagating mode in the waveguide.

According to the high frequency estimates based on the GTD, one obtains

JS ~ Js + JS (3.90)
and

- “G0 -d

MS ~ MS + Ms . (3.91)
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where SSO and ﬁgo represent the unperturbed or goemetrical optics (GO)
field produced by dﬁe within the aperture région but in the absence of
the waveguide structure. The additional contributions to 55 and ﬁs must

arise from the diffraction by the edges of the aperture which are

denoted by 35 and ﬁg in (3.90) and (3.91). It is easily seen that 330
and ﬁgo may be expressed by

60 _ oo, al

Jg. = [n x Hgp, ] (3.92)
and

=G0 _ ~i -

MG~ = [Edpg X n] (3.93)

at the waveguide opening. The unit vector ﬁ defines the unit normal at
the aperture surface pointing into the waveguide. 1In (3.92) and (3.93)
E;Pe and ﬁ;pe are the electric and magnetic fields incident at‘the open
end from the external source dﬁe at P. The incident fields (E;Pe and
ﬁ;pe) represent the unperturbed fields of dﬁe which exists in the

absence of the waveguide. Clearly, the incident fields are given by

Lo
A S
Edpe ~ #w S xS x db, — 7 (3.94)
|
-j -3k g _ e~Jks
Hdpe ~ 7 S «x dpe T . (3.95)

The expressions in (3.94) and (3.95) are valid for distances s'

which correspond to dﬁe being in the near zone of the waveguide
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aperture. However, si cannot be made extremely small to where the
reactive field terms of the type 1/(si)2 and 1/(5_1)3 become significant;
these higher order range dependent terms are ignored in (3.94) and
(3.95) which pertain only to the radiation fields. Before proceeding to
calculate the modal transmission coefficeints (C;), it is convenient to

decompose (C;) as follows:

Cn = CV o+ Cn (3.96)

GO . - ~60 =G0 d. .
where (Cn? is the part of (Cn) due to JS and MS ; whereas (Cn) is the

part of (C;) which is produced by 32 and ﬁg. It is now an easy matter

0 and ESO

to find (Cgo) from 32 by employing the results of Appendix G
which indicate the manner in which the electric and magnetic current
sources excite modes inside a waveguide. Thus, from (G-8) of Appendix
G, the GO part of the transmission coefficients are given by

-0 [EE e 0P LR M) gs

s n- s
Cgo _ aperture __ (3.97)
2 [ [ Bt xR . ds
aperture "M

At this point it is also worth mentioning that the AI method, which
is used to calculate the GO part of transmission into the waveguide and
radiation from the waveguide to the exterior region, satisfies the
reciprocity principle; this fact is shown in Appendix L. The edge
contributions (C:) may be calculated via the Ufimtsev equivalent edge

sources given by (for N incident modal rays of each mode as in (3.33)):

_ _ Du (] . - A
1, /8w ni o ni H].z
| | h(w,w.,e,s.) \

N
T - ik : ; 2
R |_-Yo Vik_| sing sing,;

(3.98)
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and ~ ~

u s

o N 8ﬂ Ds (#'9ni38058n)  (ET.30)

My =2 My=~nt [: _] AT, ’ g
i=1 11 h1nw sinB sing, .

In (3.98) and (3. 99) the 1nc1dent ray from dp makes an azimuthal angle
y' about the unit tangent z at any point of diffraction on the rim,
(see Figures 3.2(a) and (b)). Likewise, Vi in (3.98) and (3.99)
corresponds to an azimuthal angle which the ray diffracted from the edge
along the s direction into the waveguide region makes about ; at the
same point of diffraction [note; Bni and wni are like B and ¢ in Figures
3.2(a) and (b); likewise, Eo and ¢' also have the same meaning as in
those figures]. A more accurate analysis will include the obliquity of
the equivalent magnetic dipole source of (3.99) with respect to the
~axial direction (;). However, this effect is negligible for the modes
sufficiently far from cut-off; hence, it is not shown in (3.99). The

coefficients (Cg) excited by ﬁz and M, are explicitly given by

d
N ce =i e
D[ [Hy e (M) + M) de
d j=1 rim (3.100)
C = - - . . 0
n 2 [ [ B x Hds

The scattering matrix [521] can easily be identified via (3.96), (3.97)
and (3.100). 1In the case of an infinitesimal electric current moment or
dﬁe type illumination as indicated in (3.94) and (3.95) the scattering
matrix can be identified via the following relationship:
dpex |
[ ] =[[S,.1[S 7TCs | 3.101)

o
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where

(5590 = [ [5,,7 05,7 5,7 ] | (3.102)
and
—Ap | —;'- &5.—
ex | e
dpgy | = y's db, . (3.103)
'_dpex_ 2t a5,

If the source receeds to infinity, then E;e > 51,

locally plane wave illumination. 1In this case [Szg] takes the form of

corresponding to a

[521] given in (2.19) and (2.20), by bringing out the range dependent

part.

Example:

a) Far zone radiation from an open-ended parallel-plate waveguide:

X
(2] a
L L L L L L 4 L L2224 ____'.w
- o\\\\\\\\\\\\\\ - = > O

Figure 3.39. Open-ended parallel-plate waveguide geometry.

98




i) Aperture integration analysis

As shown in Figure 3.39, the geometry is independent of the
;-coordinate and the width of the waveguide is shown by "a". The Al

analysis of the TMy case will be considered first; the corresponding TEy

case will be discussed briefly later on in a similar fashion. The

expressions for the surface equivalent currents at the aperture are as

follows:
I =nxH =yH (3.104)
eq X *
and
ﬁ = Ei X ﬂ = ; Ei
eq y (3.105)

where n=z is the unit normal vector pointing into the free space at the

surface of the aperture.

The far field radiated by these equivalent currents is given by

{The distance from the origin to the far zone observation point is shown

by p, in Figure 3,39.)

: -jko : -jko |
Zrad o gk 2 & ik 2 i&
E (p,8) =y (-2 “of HX dx'- gy of (-cos8) EX 7o dx
(3.106)
or
- |~ ) dko | ~
- - j .omm . [ mm
Erad(,,0) = y C,V8r [ sin =3 x e dx I cose + V1-(13) I.
o - -

(3.107)
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The integral in (3.107) can be evaluated and the result is given by

-3k -%sv‘ne]

- N3 ,F_m'nz
E"3d(p,0) =y C, B l cos8 +V1-(xz) l

| m

ka
sin [—7 sine + —7] . Sin [T7 sine - 7]

* ' Kk mn -(-3) k . mm

7 sing + 33 7 sind - 73

As seen from (3.108), the far field pattern of each mode is

(3.108)

sinx
composed of two —x— (sinc) functions with their peaks in the modal ray

directions. Further simplification occurs in the expression if one

separately examines the odd and even modes. For m=2n+l, where n is an

integer one obtains

-3k[p-Fsine]

crad iy \/lﬁ. - \/_—?Efii ¢
B -y C Ver ’_Fose + 1-(ka)_J 7=

ka |

omm €0s (77 sing)
m

sin2e-(gg)

and for m=2n, one finds that

a
-jk[p-7sine]

=rad  ~ /3 | \/_—?Efif i
B < -y C Vgr | coso+ 1-(kal_ =
. ka
omr  sin (77 sine)
13 mw_ 2 .
! sin2e-(E%
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(3.109)

(3.110)




It is noted in the above equations that if one considers the
mw
radiation only from odd (or even) modes, their peaks occur at siné=y;

for the mth mode pattern. In this direction, the other odd (or even)
. ka
modes have a null in their pattern due to the cos(™% sine) (or

ka
sin(~> sin@)) factor in the numerator. Therefore, around this mth

ray direction, the pattern is mainly governed by the mth

modal
mode,

The aperture integration is reasonably accurate in the front
half-space (z>0) for frequencies exceeding the cut-off frequency by 5%
[28]. It is also known that AI gives exact radiation in the modal ray
angle directions [28]., 1In Figure 3.40, the variation of the modal ray
angles with increasing frequency is plotted for several odd modes.
Modal ray angles start at 90° from the waveguide axis at cut-off and
sharply decrease with slight increase in frequency. In fact, the slope
of the curves in Figure 3,40, are unbounded at the cut-off frequencies.
As the frequency is increased above the cut-off, the modal ray angle
decreases monotonically; however, the rate of decrease becomes slower.
Therefore, at a fixed frequency (or ka), the angular separation between
the different modal ray directions becomes smaller for points near the
axis of the waveguide than farther away from the axis, as can be
observed in Figure 3.40.

For all modes, at a frequency 5% above the cut-off the modal ray
angles are about 71° from the axis. The accuracy of the aperture
integration is limited to modes with modal ray angles less than 71°,
For frequencies very close to cut-off, the Al result becomes unbounded

which is not only inaccurate but also nonphysical, 1In [28], it is shown
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Figure 3.40. Variation of modal ray angle with frequency.
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from the exact Wiener-Hopf solution for this problem that the radiation
for frequencies very close to cut-off is very small,

As mentioned before, the form of (3.108) is such that the radiation
in a fixed direction‘(e) is mainly governed by the contributions of
modes whose modal ray directions are closest to 8, Therefore, if the
odd modes with modal ray directions in the %, neighborhood of 6 are
included, then the error resulting from neglecting the contribution of
the other odd modes can be calculated as follows.

ka
Let ,=6-8, and 8,=0+6, . Also one may define N.=C —5 sin6, 3 and

1° 1
ka
stt'—; sine2 3 where the symbol T « J denotes the odd integer part for
the odd modes. From (3.109), the error resulting from the exclusion of
odd modes with ray angles outside the eb neighborhood of 6 is therefore

given by

(3.111)

where NE['%Esinez 3, in which 8, < 90° but 8, is close to 90°.
Therefore, in (3.111), it is assumed that the contribution of only a few
(at most a couple of) modes with modal ray angles greater than ez is
neglected due to the fact that AI must be limited to modes not too close
to cut-off for reasons indicated above,

From Equations (3.109) and (3.111), one finds

N1 Cn An sine1 N Cn An sineg
(=] ———
LR < Tamkp | 2 sin2o-sin26 * ©  sinze-sinZe. | (3:112)
n=1 1 n=N_+1 2
| =odd 2
n=o0 n=o0dd _
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th odd mode. For backscattering

where An is the amplitude of the n
problems, these modes are excited by an incident plane wave with an
incident angle. In Appendix I, it is shown that the amplitudes An of
these excited modes can be determined from the radiation problem via

reciprocity and they are given by

c ka ka

n Arz. J 2 sine 5, cos (T sind)
A, = 57 [cos® +\1-(ra) ] e Xa = (3.113)
n Ko sinZe - (13

Inserting these mode amplitudes into (3.112) one obtains

1 I~ sin3e1 (sinez-sinez) sinze;—
%l < 227G,

in20_cin2 z + in2p_cin? Z .
cos8, [sin26-sin20, | cos8, [sin26-sinZe, ] i

(3.114)

A similar analysis can be performed for the even modes of (3.110).
The important thing to be noticed from (3.114) is that, as the frequency
increases, the number of propagating modes increases also; however, by
retaining only the modes with modal ray angles in the eb neighborhood of
8, the error remains bounded. Also in the region close to the axis
(i.e., 6+0) one can reduce the value of 8, and still expect to get the
same error, This is due to the fact that modal ray directions are more

densely clustered around the axis.
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For the TEy case, the equivalent currents are written as follows:

- -

u
E
x
!
i

ooyl
Jeq -X Hy . (3.115)

and
- —i ~ ~ .i
Meq

]
m
x
>

n

<
m
.

(3.116)

The radiated field is given by

. -jkp . -k
~rad _ 2 \/!E. a8 Y AL i .
H =Yy |-y, V8r of E = dx' -\ &y of (-cos8) Hy 7 dx
(3.117)
or - - _
i -jkp | | |
“rad _ * Jk a mr € mr.2 |
HES =y C YV En of cos T3 x = dx' cos® + V1- (x3) ’ .

(3.118)

The integral in (3.118) can be performed in closed form and the

result is given by

l +
! _
~rad _ 2 \/lﬁ mr2 | €
P =y C Y gy | cose +\/1- (ta l 7 2
- [ka ) mn] ) [ka o mn]_1
sin |72 sing + 75 o Sin [T sind - 75
" ()" T — . (3.119)
| 7 sind + 37 5 SIn6 - 33

sinx
Again, the pattern is composed of two =y type functions. An
error analysis similar to the TMy case can be performed in this TEy case
to indicate the effect of excluding modes whose modal ray angles lie

outside the eb neighborhood of 9.
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ii) GTD Analysis

In the GTD approach, the far field radiation is due to the
diffraction from the edges of the half planes making up the waveguide as
shown in Figure 3.41, This analysis is described below for the TMy case
using only a first order GTD (which neglects rays multiply diffracted
across the aperture). The analysis for the TEy case is sihi]ar, hence,

it will not be discussed here.

x
A
6 g —e > ®
:EZm . m
Q unwm-ko
6 m —» O
7 ——— AN WA Wa T v wn v W v e »
0

Figure 3.41. Geometry for the edge diffraction analysis.
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For the TMy case,

mm mm
J7ax - aX
i e -e -ijz
Ey =C 77 e (3.120)

m

as before. The modal plane wave corresponding to the first term on the
right hand side of the previous equation is incident on the bottom edge
at (x=0,z=0) and the other one corresponding to the second term is
incident on the top edge at (x=a,z=0).

The electric field E;l which is diffracted from the bottom edge at

x=0 is given by

. . . 1 1
. e'Jkp e'JkP Cm (_l)e'Jﬂ/4 -

gd o ' p = m=0-9, T-0+y,
yl " "y s ¥p o 2 /2w _cos (_Z"—) cos (_2__ |
(3.121)

using
Ey (x=0) =77 and sin ¥, = ka ) (3.122a,b)
th

where ¢  is the m™ modal ray direction (see Figure 3.41).

Similarly, the diffraction from the top edge at x=a, can be written

as
-jke -Jjkp -jn/4
i S 8 im gkasine SMe T
y2 y s Yp Yo °m i 2 V2nk
1 1 i
n+0-y T+O+Y . (3.123)
| cos ( 5 ) cos ( ) ‘
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The total diffracted field is obtained by superposing the

diffractions from each edge; thus, one obtains

ka .
-jkp . J77s1n8é
Ed = Ed + Ed = ° C JE'E———E———
y Syl T fy2 7 /p “mV8m
S ke W oka o omm T
. Sin [2 sine + 5] . Sin [Z2 sine - 7]
J - (-3) . (3.124)
o+y -y,
I_ sin ('77"") sin ('TT_-) -

The result in (3.124) can be improved by including the contribution
to the radiation resulting from the rays which undergo multiple
diffraction across the aperture [10]. However, for wide apertures
(approximately greater than one wavelength) these higher order effects
are~sma11 enough to be neglected.

The Equations (3.108) and (3.124) based on AI and GTD,
respectively, have the same limiting values at e=%y, [41]; however, away
from the modal ray directions, the Al result differs from the GTD
result, and as described in Appendix H, the AI result can be corrected
using a modified PTD approach so that it agrees with the GTD.

In Figures 3.42 through 3.46 the pattern facfors of certain modes
obtained using AI, GTD and modified PTD are compared. As can be seen,
the modified PTD approach gives results almost indistinguishable from

the GTD result. Also, the agreement between the GTD and Al gets better

for larger apertures.
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Figure 3.42, Comparison of far zone modal radiation patterns from an
open-ended parallel-plate waveguide. Mode index = m=5,
modal ray angle=10°, ___ GTD, _ _ AI, xxx modified PTD,
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Comparison of far zone modal radiation patterns from an
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Figure 3.44, Comparison of far zone modal radiation patterns from an
open-ended parallel-plate waveguide. Mode index = m=5,
modal ray angle=80°, ___ GTD, _— _ AI, xxx modified PTD.
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Comparison of far zone modal radiation patterns from an
open-ended parallel-plate waveguide. Mode index = m=6,
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The above results can be extended to the calculation of radiation

from a pair of staggered, semi-infinite parallel plates as shown in

Figure 3.47,

analysis is developed only for TMy case here as an illustration,

The staggering is determined by the angle (t,).

The

In

this case, the equivalent currents of (3.104) and (3.105) take the

following form

s i, e i
Jeq =y costoHz + s1nton)
and
-.'-A A. .i
Meq = (-2 costo + X s1nto) Ey .
X

2 -

/
Ve

7/

/

to

) i—Ll—LL_.____’m

a

/

Figure 3.47.

0
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—— —» 00

Open-ended staggered parallel plate waveguide.

114

(3.125)

(3.126)




The radiated field due to these equivalent sources is given by

) a ‘ mw_ 2 COS(t0+9y_
-ik|p - 7 (cot(to) \1-(ka) * —sinty

mr_ cot(ty) sin(aA sin(aB)
-5 l()"‘J—lA (-5" 5
mr 2 sin(8+ty)” m sin(ah) _.m sin(aB)7| |
+ 1'(ka) + sinty J - (-J)m B ' I
- - |
for -to <8< -to (3.127)
where
k mmw_2 k mn
A =7 Vi-(xa) cot(ty) - 7sTn(ty) cos(to+d) + 73 (3.128)
and
k mw k . m
B=3% \!1-(2;) cot(ty) - Binlt,y cos(ty+e) - 3 - (3.129)

Y0/ v &<
Equation (3.127) reduces to (3.108) for the non-staggered case when

L
ty=7 as expected.

The first order GTD result of (3.124) becomes

) _2 m'n' 2 CosS t0+6)“'
Jkl_? cot (to) V1-(ia) sin(to)_

y o-Jke e
Ey = Cm 8 k
l(j)m”_—_—sw:ﬁl - (-3 ———Lm(an l . (3.130)
sin(__™ sin( 5 ™ l
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Figures 3,48 through 3.52 show the comparisons of the results
obtained by AI, GTD and the modified PTD approaches. In all of the
cases, the results based on the modified PTD agrée with the
corresponding GTD results.

The multiple diffractions between the edges can be treated as in
[10] and can be added to the first order GTD result. This»is done and
compared with other methods for the transmission problem in [42].

Therefore, the higher order diffraction analysis is omitted here.

b) Radiation from an open-ended rectangular waveguide:

The far zone radiated field for the open-ended rectangular
waveguide geometry of Figure A.1 can be obtained in closed form such

that

- GE b, (3.131)

where Ee and E¢ can be further decomposed into contributions associated
with the Kirchhoff-Huygens' (or aperture) integral and the equivalent

Ufimtsev edge current integral. Thus, the electric field components are

given by

E, = Eek + Eeu (3.132)
and

E¢ = E¢k + E¢u . (3.133)
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Comparison of far zone modal radiation patterns from
an open-ended staggered, parallel-plate waveguide.
Modal index = m=3, modal ray angle = 50°, staggering
angle = t0=60°, —_GTD Al, xxx modified PTD.
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Comparison of far zone modal radiation patterns from
an open-ended staggered, parallel-plate waveguide.
Modal index = m=3, modal ray angle = 30°, staggering
angle =t =60°, __ GTD, _ _ AI, xxx modified PTD.
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Comparison of far zone modal radiation patterns from
an open-ended staggered, parallel-plate waveguide.
Modal index = m=4, modal ray angle = 30°, staggering
angle = t°=60°. GTD, _ _ AI, xxx modified PTD.
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Comparison of far zone modal radiation patterns from
an open-ended staggered, parallel-plate waveguide,
Modal index = m=3, modal ray angle = 30°, staggering
angle = t0=45°, GTD, — _ AI, xxx modified PTD.
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Comparison of far zone modal radiation patterns from
an open-ended staggered, parallel-plate waveguide,
Modal index = m=4, modal ray angle = 30°, staggering
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The contribution from the Kirchhoff Huygens' approximation is given by

<n+m . Jk
J KNom e-Jkr —7 (a cos¢ + b sing) sine

Eek - dn r ¢

{u cos¢ (1+ —?{‘"l cos8) [AJr +(-1)"A_][B+ -(-l)mB_]

0
Y
nm n My
-v sing (1+ EA cos8) [A+ -(-1)"A ][B+ +(-1)"8 1}
o - -
and
MM ke K
nm e =5 (a cos¢ + b sing) sine
E¢k T 4n r €
Y
. nm n m
{-u sing (cose + y~ ) [A, +(-1)7A_I(B, -(-1)"B_]
0
Yom n m
-v cos¢ (cose +"‘T) A, -(-1)7A_B, +(-1)"8 1}
o - -
where
1
sin [3(ksine cos¢ *ny)al
Ai = ksin8 cosé n,
1
sin [S(ksing sin¢ *my)b]
B, = ksin® sing *my
and
‘—"‘b for TE mode
u =
"y for TM mode
a or mode
™ for TE mod
V - .

l_‘mb for ™ mode
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(3.139)




Likewise the contributions from the equivalent Ufimtsev edge currents

are given by

- jk
/ k e Jkr lg (acos¢y + bsing) sine
Eeu = 8nj Nnm r €

.n ik . jk .
J l"-‘g bsinesing m 7 bsinBsing™
/s1nsohs1nsh - - (-1)7 e _
u ! n
* [DS (q’h’wh) u (A+ "’("1) A_) COS@COS¢
Ynm
—_— U ' n .
- Yo Dh (lph’ l,’h) V(A+'('1) A_) S1n¢]
.m jk . jk .
J — 7 asinfcos ¢ n =7 asinbcos ¢~
+ f.__l'—— e - (-1) e
s1n60vs1n3v - _

u ! m .
[ -DS (wv, wv) v (B+ +(-1)"B_) cos8sing

Y B
nm o ' ™ !
'y, D, (¥,» ¥,) u (B, -(-1)"B_) cos¢] - (3.140)

and
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-j jk
[k e Ik if (acos¢ + bsing) sing
E¢u : 8rj Nnm r € ’

- gk o
7 bsinésin¢~—

jk
- 3" ' “-ii'bsinesin¢ n
, e - (-1)" e

/sinsohs1nsh _

C DY (aty) u (A, +(-1)"A) sing

Y
nm

+ —7; Dz (45 W) v(A+-(-1)"A_) cos 8cos ¢ ]

.k -k
i" -'-lg asinocos ¢ n if asin@cos ¢~

- 7:;:::::;:::‘ e - (_1) e
S'InBOVS"‘IBv - —_

+ [0} (4,09,) v (B, +(-1)"8_) coss

Y
nm '
—_ U m .
+ v, Dh (wv,wv) u (B+ -(-1)"B_) cosesing] (3.141)
where u, v, A_, B, are defined as before, and Dﬁ is given in (3.42), and

| Bnm/k
cosy, = SinBoy (3.142)
cos9
cosy, = - Sing, (3.143)
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. 1/2
singyy, = [1 - (n,/K)21Y (3.144)
sinsh = (1 - sjn26c052¢)1/2 (3.145)
] Bnm/k
cosd, = Sing (3.146)
ov
cos8
coswv == sing, (3.147)
. _ 2.1/2
sing,, = (1 - (mb/k) ] (3.148)
and
sing, = 1 - s1’nzes1’n2¢»]1/2 . (3.149)

As seen in (3.134), (3.135), (3.140) and (3.141) the pattern has a
sinx A N
x_ type behavior in both the 6 and ¢ directions. There are four
sinx
different —— forms, each of which is due to the integration of a plane
sinx
X

wave component of the mode as described in (A.16). Therefore, each

exhibits a peak at the corresponding plane wave direction. Also, as the

waveguide dimensions get larger electrically, the main beams get
sharper. As a result, only a few modes contribute strongly to the
radiation in a given direction of observation.

Numerical results for this case are left to Chapter IV, where the
backscattering analysis of a waveguide cavity model is performed and

numerical values are compared with experimental measurements.
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c) Radiation from an open-ended circular waveguide:

For the open-ended circular waveguide geometry of Figure F.1, the
far zone field can be written as

=jkr

Ir -sinng " cosng
B =00 Eg ("cosne) * ¢ Es (sinn¢)] r . (3.150)

where Eg and E4 can be separated as contributions from the
Kirchhoff-Huygens' approximation and the equivalent Ufimtsev edge

currents such that

E, = Eek +E (3.151)

and

E =t  +E . (3.152)
The contribution from the Kirchhoff-Huygens' approximation becomes

TE o modes incidence:

+
1+coso cossnm

N ' .
Egg = 3 kZoNnm n 251n6 Jn(an) Jn (kasine) (3.153)
. ' sin&nm . ' .
E¢k = kZoNnm an 2(cos8,,-cos8) Jn(an) Jn (kasine) (3.154)
§ = cos (8 /k) (3.155)
nm nm *
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™ ined .
nm_Modes incidence:

sind '
_ N .
Eek J anm an 2(cossnm-cose) Jn(an) Jn (kasine) (3.156)
E, =0 | . (3.157)

ok

Likewise, the contribution from the equivalent Ufimtsev edge currents is

given by

TE  modes incidence:

] e "
_ N . .
Eqy =32, N nf(e,snm) Jn(an) [Bnm sin I (kasine)
' Sam cose
- kan Sin =5 Yasine Jn (kasing)] . (3.158)
n [ 1 . Gnm f ) .
E¢u =3z, Nom f(B,snm) Jn(an) {kPnm < sinm (kasinsg)
) 8 coso ' | Jn(kasine)
=N B SIN 5T [Jn (kasing) - Kasing 1} (3.159)
TMnm modes incidence:
§
N ' 2 .MM cosB .
Eeu = j Nnm f(e,snm) Jn(an) [n By ST Kasing Jn (kasing)
e 1
+ kan sin 3 Jn (kasine)] . (3.160)
n 1 6nm )
E¢u =. 3 N nf(e,Gnm) Jn(an) {Bnm sin == J, (kasing)
0 cos6 . Jn(kas1ne)
¥ kPnm $1N 2 kasine [Jn (kasine) - kasin® 11 (3.161)
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where

0 Gnm

Cos 3 - COS "5

f(e,8 ) = . : (3.162)

COSGnm- cos 9

The validity and accuracy of these results are extensively

discussed and numerical results are presented in [22].

3.2.2 Transmission of Modal Energy Between Two Interior Regions

A waveguide junction between two waveguide sections is shown in
Figure 3,53, It is of interest to determine the transmission
coefficient Tqn which gives the coefficient of the qth mode transmitted
into guide "B" when an nth mode is incident on the junction from within
the guide "A". These transmission coefficients Tqn then are the gnth
entfy in the scattering matrix [Sga]. The Tgp is found via the modified
PTD approach involving an aperture integral and a Ufimtsev type
equivalent current integration as discussed previously in 3.2.1. The
equivalent currents at the aperture are calculated in terms of the
incident field in the Kirchhoff-Huygens' approximation for the aperture
integral. 1In addition, the Ufimtsev type equivalent currents which
represent a correction to the above aperture integral approximation are
Tocated at the aperture edges; i.e., at the edges of the junction
forming the aperture. Furthermore, the surface equivalent currents at

the aperture are given by

- o,
J_=n xH (3.163)
e

and a " .
M= xn (3.164)
eq n *
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rd JUNCTION

Figure 3.53. A waveguide junction joining two sections.

where G is the unit vector at the aperture Sa pointing into region "B"
as shown in Figure 3.53. These equivalent sources radiate into region
ngw

An application of the reciprocity theorem to an appropriate set of
fields in region "B" (as shown in Figure 3.54) will yield the strength
of the modes transmitted into region "B". The Ufimtsev type equivalent

currents are determined from the ray optical parts of incident electric

+ .
and magnetic f1e1ds represented by Eop ni and Hop,ni respectively, and

they are given by

~ ~

u

-4 ~. N I~ \/g’ Dh (¢ni’¢qi;80ni’8qi)
Mg (Q) = 2 E Yo J op,ni” 2
(3.165)
O (4 crt 38 8)
Gu ~ N [Br ] -+ 3 s ‘"ni>¥qi’oni’"qi
d(Q) =n I -V jk (Eop,ni.l ) 2.‘Sin\|)q-i|
1=l (3.166)
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Figure 3.54, Equivalent sources at the aperture radiate in a uniform
waveguide,

where the angles Yqi and Bqi are computed from the jth ray trajectory of
the qth mode in region "B". Such an application of the reciprocity
theorem was indicated earlier in Section 3.1, and hence it will not be
described here. For the reasons presented earlier, only the n-directed
component of the magnetic dipole source is included in (3.166).

The transmission coefficients are then given via reciprocity

arguments by

ot al U s ot 3 -+
HO o (MOMY) de' + [ (M oHY) - 3 «E7)ds’
A Mt () 53 Meqy) - Jeq'Eq)
T, = — . (3.167)
an 2 [[E . x W
£f gt X Hgp My h dy de
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Example:

Transmission of a TEM wave in a parallel-plate waveguide

into a whispering gallery mode in an annular waveguide.

The geometry is shown in Figure 3.55. The dimensions and
polarization allow only a TEM mode to propagate in the parallel-plate
waveguide, and only one whispering gallery mode can likewise exist in
the annular waveguide. The coupling from the incident TEM mode into the
whispering gallery mode is found to be very close to unity for the

values of radius "b" changing from 1A (wavelength) to 2A.

-b=0.4)

Figure 3,55 Termination of a parallel-plate waveguide with an annular
waveguide.
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CHAPTER IV
NUMERICAL AND MEASUREMENT RESULTS

In this chapter, the scattering matrices described above are
combined to solve some two and three dimensional problems of interest.
Whenever possible, the results are compared with other methods of

solution or measurements.

a) Reflection from a 2-D horn antenna:

The voltage standing wave ratio (VSWR) of the two-dimensional horn
antenna is calculated. The antenna is shown in Figure 4.1 and has a
waveguide width of 0.375 wavelengths which is chosen so that only the
dominant TEM mode will be excited far from the edges. As seen from the
figure, the reflection is due to the discontinuities at the throat and
the open end. The problem is solved using the procedure described in
Chapter III, and the result is compared with the moment method
calculation [43] in Figure 4.1. In the latter figure, the reflection
due to the throat alone is shown separately, and as the horn angle (a)
gets smaller, the reflection from the throat gets smaller also.
However, for a small, there is strong reflection due to the

discontinuity at the open end.
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Figure 4,1. The geometry and VSWR of horn antenna.
— — — Only throat contribution

Throat and rim contributions

Moment method calculation
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b) Reflection from sharp bends in a parallel-plate waveguide:

The reflection of the TEM mode due to sharp bends in the parallel
plate waveguide of Figurel4.2 is calculated., The reflection and
transmission coefficients are determined from the formulas developed in
the previous chapter. The magnitude of the total reflection from both
junctions is presenteﬁ in Figures 4.3 and 4.4 for various bend angles

(8) and lengths (L) of the bent section, respectively.

\ WA NI

4 <~~~ |NCIDENT TEM WAVE
/\ W=0.4 A\ ~—» REFLECTED TEM WAVE
777 7777 777 7 (FROM BOTH JUNCTIONS)

L

{ 8

W

Figure 4.2. A planar 90° bend in a parallel-plate waveguide.
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3. The magnitude of the reflection from the sharp bend of
Figure 4.2 as a function of bend angle.
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Figure 4.4, The magnitude of the reflection from the sharp bend of
Figure 4.2 as a function of section length L.
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c) Reflection from a circular bend in a parallel-plate waveguide:

The geometry of the circular (90°) bend in a parallel-plate
waveguide is shown in'Figure 4,5. The magnitude of the total reflection
from both junctions is calculated as a function of the radius (b) as
shown in Figure 4.6. Note that the reflection in the present case is

very small compared to that which occurs in the case of a sharp bend as

shown previously in example b).

kool

o 4N+~ INCIDENT TEM WAVE
"~ ~~REFLECTED TEM WAVE

7 (FROM BOTH JUNCTIONS]

Figure 4.5, A uniform 90° bend in a parallel-plate waveguide.
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d) Electromagnetic backscattering from a waveguide cavity model:

PERFECTLY

c
SECTION I wALLS TNe

- X
/’

OPEN END
SECTION T

Figure 4.7. The geometry of the cavity model,

The waveguide model of interest in this work is shown in Figure
4,7. It is basically an open-ended cavity composed of two waveguide
sections, The first section is part of a sectoral waveguide with one
end open; whereas the other end of this section is connected to a second
section which is a uniform waveguide with a planar termination at its
far end. The exterior of the second section is curved at the back end
to minimize the scattering coming from the exterior features of the

structure, The axis of the waveguide coincides with the E-axis of the
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coordinate system, and the ;-axis is in the vertical direction. The
model is made of wood and then coated with a conductive paint. The
dimensions of the cavity are shown in Figure 4.8.

The side walls in each of the waveguide sections are parallel to
the y-z plane; therefore, there is no tapering effect to be included for
those walls. The first step in the analysis is finding the modal field
expressions in the rectangular and sectoral waveguide sections. This is
done in Appendices A and C where the expressions are given, and the
relationship between the mode sets of sectoral and rectangular

waveguides is shown. Therefore, the effect of tapering can be included

[-‘19.7"——l-—|2"———-

(a) SIDE VIEW

[
|

22222022 T T T2Z T

8 " 9"
|

(b) TOP VIEW

Figure 4.8, Side and top view of the cavity model.
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by modifying the propagation constant in the rectangular waveguide mode
expressions which are transverse to the ;-direction. So, the analysis
ijs first done on a rectangular cavity as shown in Figure 4.9, and the
solution is modified’subsequently to include the effect of tapering.

The geometry of the rectangular waveguide structure is shown in
Figure 4.9. The cross-sectional dimensions of the waveguide are "a" and
“b" in the x and y-coordinate directions, respectively. The length of
the waveguide from the open end to the back wall is given by the
dimension (L). A1l of the walls of the cavity are assumed to be
perfectly conducting. The structure is illuminated by an incident plane

wave which is given by
el L i2 jk(X51neicos¢i + ysineicos¢i + zcosei)
E' = (Eg0 + E¢¢) e (4.1)

where 0 < 81 < n/2, 0 < ¢i < 2m are the elevation and aspect angles of

the incident field direction, respectively.

Y

]
INCIDENTNXS ™~~~ ‘7
PLANE L : SHORT
WAVE N b / L CIRCUIT
]
2 8 @ yrre———————d—
. T~
OPEN END PERFECTLY
« CONDUCTING
WALLS

Figure 4.9, Geometry of an open-ended rectangular waveguide cavity.
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The scattered field is composed of two main contributions: 1) the
field scattered from the open end by itself, and 2) the field which is
radiated from the open end. The latter undergoe§ multiple reflections
between the open end and termination at the back wall after it is
initially coupled into the waveguide from the incident field. However,
from experimental measurements, these multiple interactions are
determined to be negligibly small for the cavity model being considered
here; therefore, their effect is ignored in this study. Only the first
order interaction is discussed which includes the coupling of the
incident energy into the interior waveguide modes through the open end,
and subsequent reflection of these modes from the back wall and finally,
the radiation of these refliected modes from the open end. In Appendix
I, it is shown that the mechanisms of coupling into and radiation from
the open-end are equivalent via the reciprocity principle.

For a finite cross-section, the field incident at the open-end
excites a finite number of modes which propagate in the -2 direction
without attenuation, as well as an infinite number of evanescent modes
which attenuate exponentially away from the open end in the -2
direction. In this study, it will be assumed that the dimensions "a"

and "b" are large enough to excite at least a few propagating modes and

the length "L" is long enough for the effects of the evanescent modes to

be negligible.
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i) Results for the Scattering only from the Rim

To check the validity of the analysis, the scattering from the rim
is calculated using (3.11), and results are compared with a set of
measurements obtainea using the Compact Range Facility at the
ElectroScience Laboratory, The Ohio State University. The measurements
were performed on a cavity model as shown in Figures 4.7 and 4.8. In
order to remove the interior cavity effects, the inner surface of the
back wall of the cavity was covered with absorbing material. Two sets
of measurement results were obtained.

a) At a fixed frequency, the angle (8) from the z-axis is
varied in the horizontal (4=0) (or vertical (¢=90°)) plane from 0 to 90
degrees,

b) At a fixed angle (6) in the horizontal (¢=0) (or vertical
(4=90°)) plane the frequency is varied from 8 GHz to 12 GHz in 10 MHz
steps. Therefore, a bandlimited frequency response is obtained. From
this response, a time domain scatterin
illustrate the scattering mechanisms. This is accomplished by
processing the frequency response through a Kaiser-Bessel window and
inverse Fourier transforming the windowed reéu]t using an FFT algorithm,
Since the measured spectrum is bandlimited, the time domain response
represents the impulse response of the target which is convolved with

. s1nwbt
T % cosw t (4.2)

where wb=ha1f-bandwidth (2 GHz), and . is the center frequency which is

10 GHz in this case.
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The measured and calculated radar cross section (RCS) patterns
are shown in Figures 4.10 through 4.21 for different polarizations
and frequencies. In each figure, measurements (éolid line) and
calculations (dashed line) are drawn on the same scale in terms of dB
relative to square meter (dBSM). Figures 4,10 through 4.15 correspond
to a horizontal (x-z) scan; whereas, Figures 4.16 through 4,21
correspond to a vertical (y-z) scan. In both the horizonté1 and
vertical scans, the radar cross section is measured and analyzed for two
polarizations (& and 8). Finally, each case is repeated at three
different frequencies, namely around 8, 10 and 12 GHz. In both the
horizontal and vertical scans, a % directed incident electric field will
not diffract from two edges which are parallel to the scan plane.
Therefore, the contribution to the radar cross section in these cases is
dominated by the diffracted fields from the remaining two edges. As
shown in Figures 4,10 through 4,12 and 4.16 through 4,18, the
calculations agree reasonably well with the measurements. However, for
the other polarization (5), all four edges of the open end contribute tb
the radar cross section, and the contribution from two of these four
edges reduces essentially to that from the end points (or corners). As
shown in Figures 4.13 through 4.15 and 4.19 through 4,21, the agreement
between the measured and calculated results is not as good as the
&-po]arization case, especially in the plane (¢=0) pattern. horizontal
The reason for this discrepancy will become clearer after discussing the
frequency domain responses, suffice it to say for now that it is due to

the imperfections of the model,
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Finally one notes that the rim scattering analysis performed here
is valid for aspect angles away from the shadow boundaries of the
diffracted field. For aspect angles close t6 the shadow boundaries of
the edges (6 close to 90 degrees) the approach described here should be
modified. This modification will not be given here,

Frequency scans are done in the horizontal (¢=0) plane, for the two
different polarizations and the angle (6) fixed at fouf different
va]ues; namely, 6 equals 0, 15, 30 and 45 degrees. The measured (solid
1ine) and calculated (dashed line) radar cross section results are
plotted on the same graph and given in dBSM, The phase variation of the
radar cross section is also shown in the figures. In order to be able
to make a phase comparison, the measured data has been processed so that
“the two results have the same phase center., The frequency spectra are
then inverse Fourier transformed to obtain the time domain responses.

As explained before the time domain response is not an impulse response
although it has been denoted as such on the plot for descriptive
purposes Therefore, in order to make the comparison easier, the curves
corresponding to measured and calculated time domain returns are shifted
by an equal amount from the center line. The scale in the time domain
is dimensionless and should be taken as a relative scale. Finally, due
to the malfunctions of electronic instrument during measurements, there
are some glitches in the measured data, They are kept as they appeared
originally, since their presence does not affect the overall
characteristics of the curves.

As in the case of angular patterns, the amplitude and phase of the

measured and calculated RCS results as a function of the frequency are
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in good agreement especially for a $ polarized field (Figures 4,22
through 4,29). Also, it can be seen from the time domain plots that
almost all of the measured return is from the rim at the open end. The
absorber put at the back very effectively removed any internal cavity
effects.

In the case of horizontal (5) polarization, (Figures 4.30 through
4,37) the time domain plots show a relatively large return occuring later
in time than the return from the open end. The variation of the position
of this return with different values of (8) implies that it is coming
from the external surfaces of the cavity model. Therefore as shown in
Figures 4,32 through 4,37, the comparison between calculated and measured
radar cross section results is not good. This also explains the
discrepancy in the angular patterns of Figures 4,13 through 4,15, 1In

order to compare the returns coming from the open end only, the unwanted

return was gated out from the measured time domain data as indicated in
each figure. The actual measured and calculated returns are shown with
constant shifts, as before. These time domain plots were then converted
into the frequency domain and shown on the same graph. As can be seen in
Figures 4,32, 4.34, and 4.36 the calculated (long-dashed 1ine) and
gated-out measured (short-dashed line) results agree fairly well since
they both correspond to the returns pertaining to the rim of the cavity.
As explained before, the time domain responses shown are not the
actual impulse responses because of the bandlimited nature of the data
in frequency domain., If one had more frequency domain information then

the time domain results would be closer to the true impulse responses.
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Figure 4.23, Inverse Fourier transforms (i.e., time domain plots) of
the results in Figure 4.22.
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Inverse Fourier transforms (i.e., time domain plots) of
the results in Figure 4.36.
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In order to show this, calculations corresponding to Figure 4.28 were
repeated and expressions of Equation (3.15) were extended down to 10
MHz. The resulting frequency domain plot is shown in Figure 4.38.
Then, this data is inverse Fourier transformed, and the time domain
result is shown in Figure 4,39, This result is closer to an actual
impulse response and clearly shows the single, double and triple
diffractions from the vertical edges of the open end. Note that the
double order diffractions originating from both edges return to the

receiver at the same time.

ii) Results for the Interior Cavity Effects

As described at the beginning, the coupling of incident energy into
- the interior waveguide modes and their subsequent radiation after
undergoing multiple reflections between the back wall termination and

the open end comprise the cavity effects.

Since it is difficult to experimentally isolate the open end rim .
scattering from the cavity effects, the calculations include both
effects for cdmparison purposes; namely, the results of (3.15), (3.134),
(3.135), (3.140) and (3.141). The measurements and calculations were
performed in two categories as in Chapter III; namely, aspect angle and
frequency scans with the results presented in dBSM,

The waveguide model is large in terms of the wavelength; therefore,
a large number of propagating modes can exist inside the cavity. For
example, at the frequency of 10 GHz, there are 152 propagating modes (86

TEnms 66 TMpy) as well as an infinite number of evanescent modes. Since
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the wavegquide axial length is very long with respect to the wavelength,
the evanescent modes will decay very significantly such that they can be
neglected, Then the next question is whether the propagating modes have
a preferred direction of radiation in that one can choose a few special
ones rather than all the propagating modes and include only those in the
analysis, It is has already been mentioned in the previous chapter that
modal radiation is dominant along each of the discrete modal ray plane
wave directions of that mode. Since each mode has discrete radiation
directions, some will radiate strongly close to a desired direction, and
others will not. This being the case, one can anticipate that only a
few modes are significantly excited by the incident plane wave which
radiate significantly in the backscatter direction. This claim has been
checked numerically, and the results are shown in Figure 4.40. An
open-ended rectangular waveguide with dimensions equal to the
experimental model used in this study is analyzed at 10 GHz. The
backscatter field is calculated in (x-z) plane by varying the aspect
angle (8). Note that only the modal effects are included and the
incident field is assumed to be ;-po1arized. It is found that only the
TEno modes are excited in this plane for this po]arization. Their plane
wave directions or modal ray angles are tabulated in the figure. The
scattered field is calculated by including all modal contributions as
indicated by the solid 1ine. For comparison purposes the contributions
of TEno (n=1,...5) modes and TEno (n=6...13) modes are shown in the same
figure. Note that the first five modes radiate strongly and almost
replicate the solid curve in the region close to their modal ray angle

directions. The remaining seven modes are major contributors for large
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aspect angles. After observing this fact, the research focused on
finding a rule of thumb prbcedure which could be used to select the
minimum number of modes needed for a given direction of incident plane
wave, From numerical results and comparisons with the experimental
data, it was found that in the horizontal (¢=0) and vertical (4=90°)
planes only three modes were sufficient for the cavity under test.
These three modes are selected based on their modal radiation direction
such that they are closest to the incident plane wave direction. The
aspect angle scan results are shown in Figures 4.41 through 4.64. As
done in the previous section, the experimental results are indicated by
the solid line and calculations by the dashed one. In each case, a
comparison is provided for the calculations which include all
propagating modes versus three propagating modes. In all cases, a 1
dB/bounce energy loss is assumed to model the imperfection of the
conductivity of the model used in the measurements.

Since this new concept proved to be so valuable in the principal
planes; namely, ¢=0 and ¢=90° planes, it is next applied to ¢=45° plane
to see if it fails when the incident plane wave direction is not aligned
with the structural symmetry. The aspect angle scan is calculated in
the ¢=45° plane for both the $ and 8 polarized incident fields., The
results are shown in Figures 4.65 and 4.66. In this case, the 18
preselected modes are compared with the complete 152 modes as shown in
each figure. Note that more terms are necessary in this general case as
indicated by the results shown in Figure 4.67 where the six mode result
is compared with the 152 mode one. Even so it is clear that one can use

far fewer modes than the complete propagating mode set.
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Finally, the frequency scan results are calculated and compared
with measurements in Figures 4.68 through 4.83. As in the preQious
section, the time domain results are deliberately shifted to better
illustrate the compafisons. Note that in each case the comparisons are
very good.

In Figure 4.84, the contribution of several modes. is plotted
separately for the geometry associated with the results of Figure 4.75.
It is seen that as the mode number increases the given mode undergoes
more bounces inside the waveguide, travels a longer distance, and
therefore its return is received later in time; i.e., a stronger modal
dispersion. Also note that the modal terms add up to form ripples in
the total result from the cavity effect. If not understood correctly,
‘one might think this is indicating different scattering centers, which
would not be true. This shows that modal propagation should carefully

be traced if one wishes to obtain the true response for the cavity

e) Electromagnetic backscattering from a circular waveguide
cavity: :

The EM backscatter results based on (3.5), (3.6), (3.151) and
(3.152) are calculated here. The rim and cavity effects are separately
shown together with their superposition in Figures 4.86 through 4.89,
The main contribution to the backscatter return is the cavity effect due

to the perfectly-conducting termination; whereas, the rim scattering
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Figure 4.85, Circular waveguide cavity terminated by a short circuit.

contribution results in a perturbation to the cavity effects. The
radius of the waveguide is taken as 3.34 wavelengths which allows 115
modes to propagate. The Figures 4.86 and 4.88 illustrate the
contributions of all propagating modes; whereas in figures 4.87 and 4.89
only the modes are included with modal ray angles inside a 10°
neighborhood of the observation direction. It is clear from these plots
that by including only the few significant modes, one can substantially
reduce the amount of calculations without seriously sacrificing
accuracy. It is also noted that the length of the waveguide cavity is

10 wavelengths; therefore, all evanescent mode contributions are

neglected.
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CHAPTER V
CONCLUSIONS

A relatively simple, efficient and sufficiently accurate analysis
of electromagnetic scattering by a class of electrically large,
open-ended waveguide cavities was developed in this work using a hybrid
combination of high frequency, modal and multiple scattering methods.
The cavities are composed of waveguide sections in which the Helmholtz's
equation is separable; therefore, the EM field inside each section can
- be wbitten as a sum of waveguide modes, These modal waveguide field
expressions are expressed in terms of "modal rays" through asymptotic
approximations to the modal functions. The scattering properties of the
discontinuities formed by the junctions between the sections are
analyzed using high frequency techniques together with the modal rays.
The latter techniques employ the GTD and the ECM which require a
knowledge of the pertinent diffraction coefficients that are available
from the asymptotic solutions to appropriate canonical problems. In
some situations the analysis also employs high frequency approximations
based on the PTD and its modifications, These high frequency techniques
used in conjunction with the "modal rays" lead to a relatively simple
description of the isolated junction scattering matrices. These

individual junction scattering matrices are then combined in a
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self-consistent multiple scattering approach to get the total scattering
effect of the cavity. |

Basically, the scattering matrices are analyzed in two categories.
The reflection type scattering matrices include an integration of the
GTD based equivalent currents over the edges of the junction apertures.
It is important to note that the previous ray-optical techniques
[10,14,20] to treat the reflection from the open-end of waveguides
employed the GID based equivalent electric and magnetic line sources in
free-space. That procedure is applicable only to those geometries where
one can sum up the radiation from equivalent sources and their images,
such as parallel-plate and circular waveguide geometries. In the
present work, the equivalent sources radiate in the presence of
waveguide walls and therefore they are magnetic line sources and
magnetic line dipoles., Hence, this proposed procedure can be
generalized to many other goemetries which lack the symmetry properties
required by the previous methods. The transmission type equivalent
currents are computed via a Kirchhoff-Huygens' approximation to the
aperture field. It is shown in Appendix H that this aperture
integration can be corrected in the same way as the PO is corrected via
the PTD. However, the integration process does not give any physical
insight to the problem, and as the number of propagating modes increases
with frequency, it becomes cumbersome and inefficient.

In this research, new approaches to substantially improve the
efficiency of the above mentioned aperture integrals were investigated.

It was determined that for the open-ended rectangular and circular
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waveguides the modal radiation from the open end is strongest along
their modal ray directions. Therefore, for a given radiation'direction
one can include only the radiation of those modes whose modal ray
directions are closeét to the radiation direction., In Section 3.2, it
was shown that for the cavities formed by parallel-plate waveguides, if
one includes only the contributions of modes with modal ray angles which
are less than a fixed angular distance from a given observation
direction, then the error in the backscattered field stays bounded with
increasing frequency, even though the number of propagating modes
increases with frequency. In Chapter IV, numerical and experimental
results were compared to assess the accuracy of the analysis, and to

indicate that the contribution of only a few modes with modal ray

‘directions closest to the observation direction accurately approximates

the contribution of all the propagating modes. This is an important
result, because it combines modal radiation with ray-optics, and
therefore it can be applied to many different and complex wavequide
geometries to effectively select only the few significant modes from the
entire set of propagating modes,

The accuracy of the scattering from wavéguide cavities is
determined in turn by the accuracy of the scattering matrices involved.
In this research, the accuracy of the analysis for scattering matrices
has been verified by comparison with other analytical and experimental
results on certain cavity geometries. It is noted that there were very

few dependable numerical and experimental results available for the 3-D

cavities formed by sections of linearly tapered and uniformly curved
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waveguides even though they are very often encountered in practice. The
experimental model with linearly tapered walls which was treated in
Chapter IV had a small interior discontinuity, and, as expected, it aid
not seem to significantly'inf1uence the final results. As a part of
future research, practical cavity models with more pronounced interior

discontinuities will be built and analyzed.
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APPENDIX A

MODAL FIELD EXPRESSIONS IN A RECTANGULAR WAVEGUIDE

2 -

X PERFECTLY
CONDUCTING WALLS

Figure A.1. Rectangular wavequide geometry,

As described in [44], the modes in a rectangular waveguide as shown
in Figure A.1 can be classified into sets of fields transverse to a
coordinate direction.

The mode sets transverse to the axial (2) direction are important
and widely used, because it applies to uniform nonrectangular
cross-section guides. However, in many problems, mode sets transverse

to x or y coordinate may bhe more suitable,
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These sets can be calculated from an axial or transverse vector

potential [44]. The TEpy, and ™My, to z type modal field expressions are

given by:
TEnm
2 2
na +mb
hZ = Nannm B cos n_x cos my

e, = 0

hx = Nannmna sin nyx cos my
hy = Nannm m,cos n_x sin my
e = Nnmmb cos n_x sin m.y

ey = -Nnmna sin n,x cos my
Yom = Yanm/k

3
]

Note that for both modes:

Nom = % [2¢00 €om Yom

_ 2 92 92.1/2
Bam = Lk 'na—mb]

3
1]

nt/a

mn/b

™2 n=0

e -
on 1 n#0

2
Y ab (na+m

2 2
ny +my,

-N -
nm JBnm

-N_ Y m_ sin n x cos my

nmnm b

n_cos n_x sin m
Y a by

N
nm nm a

N _n_cos n_x sinm
nm a a by

N m sin n_x cos m
nm b a by

Y0 k/Bnm

o<x<a 0<y<b

2..-1/2

2

sin n_x sin m
a by

(A.1la;b)

(A.2a;b)

(A.3a;b)

(A.4a;b)

(A.5a;b)

(A.6a;b)

(A.7a;b)

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)




where the normalization factor Nnm is defined such that

ab
1 - * - _
7 J] &, xR +zdyd=1 s (A.13)
o 0 nm nm
where énm and ﬁnm are the tangential components of the field as follows,
F Ao . FiBZ .. FiB 2
= nm° _ rg nm
Enoda1 = [&, xve, ¥y +e, 2] e (& te ., z]e (A.14)
- A oA ~ Fi8 7 ., iz
Hmoda1 = thy x*hy v +h, 2] e =[+R_+h , zle (A.15)

and "*" denotes complex conjugation.

The upper or lower sign represents a mode propagating in (+£) or
(-2) direction, respectively.

The modal field expressions in the rectangular waveguide can be
~decomposed into four plane waves. The transverse (to 2) components of

the fields propagating in +z direction are written as follows:

& e-jsnmz _ ;%ﬂ. —k-§u+§v) e-jnax-jmby-jgnmz
i—
+(';U"§V) ejnax-jmby-jsmnz‘ + (Xu=yv) ejnax+jmby_j8nmz
+(xu+yv) e-jnax+jmby-j8nmz_ (A.16)
ﬁnm e"j BmZ i NnmJYnm _(-;V-gu) e-jnax-jmby-j B
+(;V-§u) ejnax-jmb;-jﬁnmz . (;v+§u) ejnax+jmby-j3nmz
+(-;v+;u) e-jnax+jmby'j8nmz_ (A1)
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where

m
4 = | ™ for TE modes (A.18)
‘ ng for TM modes
and
n
v = | a for TE modes . (A.19)
-my for TM modes
The modal sets transverse to ;-axis can be written as follows:
TEx ,nm Modes My ,nm Modes
e 0 'Nannm TBnm “IBam  cosn xsinm.y
(A.20a;b)
2am Ve (ng24mp2) ngemy
ey 'Nannm (na My )s1nnaxcosmby Nannm T TBpm S1nn,xcosm,y
(A.21a;b)
(ng2+mp2) (ng2+my2) ,
ez Nannm _TEE;__ mbs1nnaxs1nmby -Nannm _3355_— na-s1nnaxs1nmby
(A.22a;b)
Ynm(naZ+my2) s 9
e NomTnm ~ KBZnm (k “Ma ) 0 (A.23a;b)
sin_xcosm.y
h, =N T —z—Ynm 2+my2) N T 24my2) Y i
y “nmnm B%nm (ng®+my amTnm (Ma”*Mb nmCOSNy XS 1M,y
na-mbcosnaxsinmby (A.284a;b)
X Ynm (na2+mb2)
N T = 2 -
Z "nm'nm iBpm (Na2+my2) NowTom  38nm Y__m cosn_xcosm,y
.25a;b
n cosn_xcosm.y (A.25a;b)
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From (A.1) through (A.25), one can easily conclude that

k .
TEx,nm * Tom (na TEom = ™ Bam TMnm) (A.26)
.k
TMx,nm = Tom (™ Bom TEam ¥ " ™Min) (A.27)
where !
' Bom |
Tom = (A.28)
nm .

4 2 2 2_.pn 2
(n_2+m 2) (kZ-n_2)

or, alternatively,

- K _

TEnm B Tnm na TEX,nm * mb 8_nm- TMx,nm (A.29)
- K _

™ = Tom | ™™ Bom TExynm ¥ Ma TMx,nm . (A.30)
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APPENDIX B
MODAL FIELD EXPRESSIONS IN A PARALLEL PLATE WAVEGUIDE

The modal field sets in a parallel plate waveguide of width a, shown
in Figure B.1, can be obtained from (A.1) through (A.12), by discarding

the field variation in ;-direction. They are expressed as follows:

X

4

PERFECTLY CONDUCTING
WALLS
a

L L L L L 2. L L LL L 2 L L 2 L L L. L ’m

rA il w v Vi Vi Wil Wil Wb W N Wi W W Wi WD W N NI N NG > O

0

Figure B,1. Parallel-plate waveguide geometry.
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TEp ™n

Yn

hz Nn‘j§; cos n_x 0
-Np

ez 0 7Bn s1nnax
hx Nn Yn s1nnax 0
hy 0 Nn Yn cosnax
ex 0 Nn cosnax
ey -Nn s1nnax 0 .

The normalization fagkor Nn now becomes

2
[ ]
Yeon*avy

The rest of the parameters are obtaingd from (A.9) through
by letting m=0.
Each of these modes can be decomposed into two ray optical
(plane waves) by writing
|~ dn, x-8,z -Jn x-jB, 2~
e

- -~ Nn -e
E = -y 77 -
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in the TEZ case, and

—jn_x-jB z -jn_x-jB z~
Yole? M e 200 (B.9)

I
n
<>

in the TMZ case,
The propagation directions of these plane waves are called the modal
ray directions and the angles between the modal ray directions and

waveguide walls are the modal ray angles.

o = NONCND NN N N N N N N N N NN N N NS —_> 0

Sy

MODAL RAY ANGLE

cosd, = —h
n k
w ) 7222?27?72 272777777 77777777 -m

Figure B.2. Ray picture of nth mode,
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APPENDIX C
MODAL FIELD EXPRESSIONS IN A SECTORAL WAVEGUIDE

In this problem, it is possible to find mode sets transverse to the

x-axis. The fields can be computed from the scalar function
32 32
ay2 Yozt

nw
k2- ()2

=0 ’ (C.1)

with the appropriate boundary conditions. ¢ is the x-component of the
magnetic vector potential A in the T, case and the x-component of the

electric vector potential F in the TEy case [44].
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Case 1 TEx modes: These modes satisfy the relation EX=0 and can be

derived from E=;w.

The field components are given by;

-1 3y 1 32y
E, =03 H = TkZ, 3oox (C.2a;b)
Kk 1 1 3%y
ST Hy = 3k, o 300X (C.3a;b)
1 32 )
By =0 H, = Fkzy (ToxZ + K2) ¥ (C.4asb)

The appropriate scalar function ¢ is given by

H(l) (ktp) Ingoing Wave
. nw mmw ¢

Yo = SN (—;'x) cos ($E'¢) 0 (C.5)

H(z) (k tp) Outgoing Wave
_ %0 -
where
2 2 nw
= - (—)2
ky = k () . | (C.6)

The explicit expressions for the outgoing field components are given by;

E, = i 2; sin (“‘X) sin (¢o ) H(Z)(k o) (C.7)
%0
E, = sin (3%) cos (g (2)
6 a x) cos (4o9) _iilﬂll (ktp) (c.8)

dp ¢g
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E =0 | | (€.9)

X

1
H = Tz, (mr) cas (a x) cos (”“) d H(z)( kyp) (C.10)

do $o
1 1 n nw
Hy = - Tk o (30) @) cos (37%) sin (3o9) H iz)(ktp) (C.11)
(o}

1

H, = TKZg ks ke sin (3 cos (308) Hi2)(k o) : (c.12)

%

For small tapering angle ¢o and large p, the Debye Asymptotic

approximation for the Hankel function [45]

(1) 2 1 -vcos-1 (2) - lt‘]
ng (2) ~\/ ‘/1_—)—2:- 22 =4 (C.13)

v v W .
can be used. For small 7; cos-! 7 » 7, so the above relation becomes

(2)(2) ~"/—\73=“2r— (zj)¥ e jVz2-v2- e ' (C.14)

and

(1)

- - m
FiT
H‘Z)(z) ~VT\7;%TE'— (F)° | #5VA-3)2 e V2 e (cas)

which goes to the large argument form [44] for z>>v,
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If one makes use of (C.14) and (C.15) in the field expressions of

(C.7) through (C.12), one obtains the following expressions (up to a

common factor) for an outgoing wave:

me o ___ M oy . mn -jB m®
E = 000 Bome ST (3X) sin (goe) e " (C.16)
an JB_ o
S L mw . “Fnm
Ey = VBame ST (3X) cos (Gg4) (-i8, ) e (C.17)
Ey = 0 (C.18)
an 1 JjB_ p
(AT . —_— nw mr o "IPnn
H = 3xz5 (@) (<38,,) 7Bome €05 (3 X) cos (Goe) e " (C.19)
nm  ny mm 1 nn . mmw -jB_p
Hy = k25 (37) (o) 7Bnme €08 (@ X) sin (Gge) e ™ (C.20)
"o nmw 1 L mm -8B P
H, = JkZg (k2-(37)2) Bomp Sin (3 %) cos (3; ) e (C.21)
where
2 nw mmw
Bm = K2 - (@)% - (3$;)2 (C.22)

is the function determining the phase advance in the p-direction. Note

that Bnm is a function of p. Also, an is the nobma]ization factor

given by
L = €.23)
nm 2__”_“2
_Yo €on om a¢o (k a) 1_
in which
={2;n=0
on 1;: n%0 (C-24)
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so that
1 2 ¢°

5 [ [ Ex A pdedx . _ (C.25)
[0 N o)

By comparing (C.16) through (C.22) with (B.20) through (B.25), one can
see that the expressions of slightly tapered waveguide fields may be

approximated by TE,, TMy-type rectangular waveguide mode sets. To do

this, one has to make the following approximations:

p > 27 (C026)
pd >y (C.27)
by > b (C.28)

together with (C.25) where the p-dependence cannot be approximated by
(C.28), since it is the function determining the phase advance which is

_more sensitive to the approximations.

Case ? TMX modes: These modes satisfy the relation Hx=0 and can be

derived from R=;¢.

The field components are given by:

1 3%y 1. 3y

E) = Tk 3pox Ho=%5 Y 3 (C.29a;b)
1 1 3%y Y

E¢ =3k p 293X H¢ = -Yo 3p (C.30a;b)
1 32 2

E. =Tk (Gxz + K2) v Ho=0 . (C.31a;b)

The appropriate scalar function ¢ is given by:

H(é%_(ktp) Ingoing wave
nm L bo
¥ = cos (3 x) sin (¢o ) (C-32)
H(E%__(ktp) Outgoing wave
b0 -
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The explicit expressions for the outgoing field components are given

by:
-1 n ™ d
E, = 3k () 51 (3%) sin (300 T Mz (ko) (c.33)
N
-11 ™
E, =3k (37) (3o) sin (5%) cos (306) HEZ) (k) (.34)
b0 .
£ = 3t (k2-(3992) cos (3%) sin (3o8) #ED (k) (€.35)
b0
Y
H = po (2;) cos (3x) cos (m») H(Z)(ktp) (C.36)
¢
d
H¢ = - Yocos (2—"x) sin (:—;4)) & Hé,_z,[)(ktp) (€C.37)
b0
H =0 . (C.38)

Again using Debye's Asymptotic form for the Hankel function, one obtains
the following field expressions:

Lam nn 1 -jB_ p

- : nm
Ep =-5% (@) B SN (ﬁ() sin (¢0¢) (-JBnm) e (C.39)
Lom onw, - o 3By
E¢ = -3 (7)) (%) /_—Bnmp sin (—7() cos (—¢) e (C.40)
Lnm 1l nmo. . mm . B P
E, =Tk (K2-(3)2) 7o cos (7 x) sin (Gg8) e ™ (C.41)
m Yolnm mr -jB_p
Hp = (p¢0) ;Enmp cos (——X) cos (%‘b) e n (C‘42)
Yolam_ nx LA L
Hy = = Voamp COS (%) sin (4ot) (-38,,) e . (C.43)
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These m§da1 expressions under the approximations defined by
(C.26) through (C.28) become equivalent to the TMy modes in a’
rectangular waveguide.

The ray picture of the modes can be obtained using a similar

procedure performed for a rectangular waveguide. Each outgoing (or

ingoing) mode corresponds to four rays which follow zig-zag paths inside

the waveguide.

In the TE, case, the ray optical fields are obtained from

L L S | S _
- - nm J@X) 43 (op8) -3B 0 I mr
Ejp+E 0= 8o | *e _-péo = Bnm_
nmw mm -
(@) -3 (4¢) -38 P |—M_ -
te _ 060 = Bom_
L Nm . M A _ _
-i(@x) 43 (5g8) -38pe | " mn_
+e _ péo + Bnm_
LN L _ _
'J(a X) -J (¢0¢) "anmp mw P
‘e - oo * Bnm_l } . (C.44)
I

In the TM* case, the ray optial fields are obtained from

: L Y L LS : - -
- . nm'o I(@x) +i (G¢) -38, .0 mm l
oo+ Hy 0= a/Bnme € _pbo * Bom_
L AN U -
3@ -3 (48] -38nge l LI
‘e _ p¢o - Bnm_
L L _ _
-i(ax) 4 (¢o¢) “3BomP | mm
+e _ pcbo + Bnm_
LN - |
=3(ax) -3 (4gd) =38P | mr
+e 94’0 - Bnm_ .
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If one lTooks at the projection of outgoing rays corresponding to
nth mode in the y-z plane, one obtains rays following zig zag paths
along the guide bouncing from the tapered walls (via the approximation
in (C.13)). The ray trajectories are tangent to the circular modal ray
caustic whose radius is determined by the mode index as shown in Figure

| C.2. It is also noted that inside the circular modal ray caustic, the
| mode is cut-off and the ray representation is not valid.

The projection of the ray picture onto the x-z plane is shown in

Figure C.3, where the rays are bouncing from the parallel walls.,

@

AN

<

Ep¢o

~ B\
| N mn nm\P
I W U Y Y i (Rog)? + (e
- P »-

Figure C.2. Projection of ray picture into y-z plane.

X
|
Q -— a
nw
y Ea
-~ 0 nm Bnmie )
(ka) +(Tx )

Figure C.3. Projection of ray picture into x-z plane.
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APPENDIX D
MODAL FIELD EXPRESSIONS IN A 2-D LINEARLY TAPERED WAVEGUIDE

The geometry pertaining to the linearly tapered waveguide is shown
in Figure D.1. The expressions for the modal fields can be deduced from
the sectoral waveguide by taking the width "a" to infinity; they are

given as follows:

TEx TMy
n i mr . -8
mm . ;o =JPmP .
Ep /Bnp ke b9 S1n(¢0¢)e 0 (D.1la;b)
L
m Bm mw -.;er
E¢ /Bpp K €OS (pot)e 0 (D.?a;b)
Lm s
. Mmoo =JBme .
Ex 0 VB S1N ot € (D.3a;b)
m 0% -3 Bmp
"o 0 obo VBng K cOs Bob © (D.4a;b)
L
L .
H¢ 0 “/Bpp sin (¢o¢] (D.5a;b)
Ln¥o g |
—_— mw =JBmp .
e VB €O %0b) © 0 (D.6a;b)
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AR R R R R RIS

Figure D.1. Geometry of a linearly tapered waveguide,

where

k
Lo = 2\/eom Yo %0

is the normalization constant with

e ={2; n=0
om 1; n%0
and
mn
Bn =b/k2 - (540)? .
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The next step is to write the modal field in ray-optical form. 1In

the TEy case one can write (D.6a) as follows:-

YL o -

om J llﬂT¢ 8 J nm¢ 8
- - p - - p
Hx - 2/ Bp e _¢° m | e _¢° m _ . (D.10)

Equation (D.10) shows that a modal field is composed of two ray
optical fields. The ray picture of the modal fields is illustrated

below [18].

Figure D.2. Ray picture of nth mode.
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The ray field is obtained in the TMy case by writing (D.3b) as

follows:

Y L - . -
om o .
| J(3gt - 8.p) -3 (g9 + 8 0)
Ex 2B | © 0 m -e 0 m . (D.11)
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APPENDIX E
CIRCUMFERENTIALLY PROPAGATING MODES IN AN ANNULAR REGION
y

!

PERFECTLY
CONDUCTING WALLS

Figure E.1, Geometry of the annular region.

In this appendix, circumferentially propagating modes in an annular
region will be obtained using Green's function techniques.

The direct determination of the Green's.function for
circumferentially propagating waves can be done in a way similar to that
presented by Wasylkiwskyj [46] for the interior problem of a single
circular shell, The Green's function is the solution of
8(p-p')8(¢-0")

‘—?‘ _3_ 1 32 2 - <
30 P 3p * oZ 362 + k2) G(p,p') = - 5T (E.1)

o~

(
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with the boundary conditions

G=0 at p=a,b . (E.2)

for the TM, case. The TE, case analysis can be performed similarly. In
addition to (E.2), the radiation condition at ¢+t» has to be satisfied.

The solution of (E.1) can be written as

G(pyp') =T g (6,0"5v)) ¥ (o) (') (E.3)
n

¢

where g (¢,¢';vn) satisfies the differential equation:

¢
-2 -
Tz + V2 | g, = -8(¢-9") (E.4)
| ¢
with
g, * edvIe=e'l i st (E.5)

and wn(p) are the normalized eigenfunctions in the radial direction

which satisfy

- 4 _
o @ (pdp) *+ K202 | w(p) = v2y(p) (E.6)

with
=0 at p=a,b . (E.7)
The solution of (E4) and (E.5) is given by [46]

o-Ivie-¢'|
9, (0,6'3v) = 23V (E.8)
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1 d :
p 3o (F3p) *+K2) =y | 9, = =5(p-p") ’ (E.9)

g =0 at p=a,b and p=v2 . (E.10)
wn(p) are obtained from gp via the completeness relationship

p'8(p-0") = g v (e)v (0') =277 [ 9 (psp’su)du (E.11)
C

where C is the contour encircling the singularities of gp.

The solution to (E.9) and (E.10) is given by:

© .Tl'
: gp(p,p V) =+ T

HED (ko 912D 1) -1 (b3 ) 10 ) 1[I o, )2 (k) -HED (kP (ke )]
[HD (ka)H () (ien) () (b )i (2D (keay
v Vv AY v
(E.12)
The expression in (E12) can be written in a more suitable from by

letting

[Hgl)(sz)Hiz)(kb)-Hil)(kb)ng)(kpz)] = (s,) (E.13)
so that

2
Vey2 am Hg )(ka) flo)f(py)
gp(pap sV ) = 4 H\()z)(kb) f(a) . (E.14)
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Using this expression in (E1l1),

(2)
on (K0 (o) (p")

. (E.15)
n

.
E (o9 (o) = 427 v

Note that duy=2vdv is used in obtaining the residue sum in (E,15), where
residues are evaluated at the isolated, simple poles [47] given by
f(a) =0 . (E-16)

The Green's function of (E.3) then is written as

(2)
- - T "j\’n|¢'¢'| H\’n (ka) f(p)f(p")
G(p,p') =X T e 2) 3¥(a) . (E.17)
n Hv (kb) v ' V=vp
n

This result can also be obtained using an application of Watson's
transformation [48,49] on 2n-periodic eigenfunctions. This will also be
illustrated for the sake of completeness.

The Green's function of (E.3), can be written as follows:
by — ] ",
G(p,p') = :‘ o, (d)e (¢ )gp (psp's2) (E.18)

where eigenfunctions in the ¢ direction satisfy the boundary condition

of being periodic in 0<¢<2n, These eigenfunctions are given by

€m
2. () o (¢') =7y cos m(¢-¢") (E.19)
where
e = (Lims= 0 . (E.20)
2; m#% 0

gp is given by Equation (E.12).




Substituting (E.14) and (E.19) in (E.18)

(2)
1 im(eeeny K0
G(psp') =87 T e @) la) . (E.21)
m=-ow Hm (kb) |v=m
This summation can be written as the following integral
- - 1 Jv(¢-¢') e" -
Glpsp') =25 [ W) e STnvr dv (E.22)

C=C++C_
where C encloses zeros of sinvm in the counterclockwise direction. 1In
(E.22) I(v) is given by:

(2)

p)f(p')
f(a) (E.23)

1
1(v) = 55

(2)
H2Z/ (kb)

and has no singularities in C, as shown in Figure E,2,

Imy

r\ 3,

POLES OF =
sinvr

Figure E.2., Contours used in the Watson transformation,
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In the figure, the singularities of I(v) are assumed to be encircled by
the contour C' (C'=C'++C'_) in the complex v-plane. Deforming the
original contour C into C' and evaluating the integral as a residue sum,

one obtains

. 2)
A Hin (ka)

- - x °  =Jvn(e-¢') e f(po)f(p')
G(p’p ) = J nZl e sin Vn“ H(z)(kb) Bf(a)l -
v =Vn
n
Jv =« (2)
. ; -jvn(e-¢') e " Hy n(ka) f(p)f(o")
3T e -
83 n=1 sin v_ T HSZl( b) 3f(a)| -
(E.24)

The first sum corresponds to upper half plane poles which represent
modes propagating in +$ direction and the second summation is obtained
from the residues of the poles in the lower half plane representing
modes propagating in -$ direction. By utilizing the symmetry properties
of Hankel functions both kinds of modes can be included in one summation

as follows:

o ao= -iwle-e']l e T f(e)f(e")
6(e0") =37 T e sin vor 2] - (E.25)
\)—\)n
Also using
Jv

e © -Zjvnnp
~—————=2j T e (E.26)
sin v p=0

one notices that each term in (E.25) corresponds to an infinite number
of waves reaching the observation point after p complete encirclements.
Therefore, this representation of Green's function contains multiply

encircling waves, which are included in the 2w-periodic eigenfunctions,
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The first encirclement (p=0) gives the following expression for the

Green's functions;

“jvgle-t] M (ka) £(p)f(p')
af(a) | (E.27)
V=vp

L

G(p,p') = 7

. © (2)
1 an (kb)

n~ 8

n

which agrees with (E.17) above.

In deforming the contour C into C', one has to shbw that the
integrand of (E22) is exponentially small on the semicircular contours
I+ shown in Figure E.2 at infinity. This can be done using the Debye

Approximations to Hankel functions [45,49] and the fact that

Lim | e3VI7-¢] . _
Rco ‘ SR ‘ o M e-R(n|s1ne| + (w-8)sing) (E.28)

"where M is bounded and veRe'®,
As is observed in (E.17) and (E.27), the eigenvalues of
circumferentially propagating modes are determined through the zeros of
f(a), which is given by

(@) = 1tk w20y - w00y Do) (£.29)
Yn n n

Using asymptotic approximations to Hanke functions, the zeros of
f(a) can be located in the complex v-plane., As shown in Figure E.3, the
zeros are symmetrically located on the real and imaginary axes for real
values of the wavenumber k. The purely imaginary eigenvalues correspond
to evanescent modes which decay with the distance in the circumferential
direction. The real eigenvalues correspond to propagating modes, which
travel inside the annular region. The magnitudes of these real
eigenvalues are less than the electrical radius of the outer shell (ka).
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Imy

EVANESCENT MODES

REGULAR WHISPERING
MODES GALLERY MODES
—— Ay

Rew

Figure E.3. Location of eigenvalues in the complex v-plane.

From (E.17) and (E.27), the expressions for the eigenfunctions
corresponding to the eigenvalues v, are given by;

v, 14l

e AR
Qn = An (ka,kb) e f(p) (E.30)

Where Aﬁ is a normalization factor determined by the inner and outer
radii. To get the ray picture of propagating modes, one needs to look
at the eigenfunctions corresponding to real eigenvalues. If lvn|<kb<ka,
then the Hankel functions in f(p) of (E.30) can be approximated by their
Debye Asymptotic forms given in (C.13). This approximation gives

incoming and outgoing rays, bouncing from the inner and outer shells and
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staying tangent to a circle with electrical radius v, as shown in Figure

E.4. The modal ray angles sg are given by the following expressing:

\Y

Gc % Sin"1 a 7 hell
=2- upper she
" k(B) » | _Tower shell (E.31)

This ray picture is similar to the ray picture in a parallel plate
waveguide in the sense that the rays bounce from both walls. Therefore,

these modeé will be referred to as regular modes (RM).

For kb<|vn|ka, one can use the following spatial filtering property
of Bessel functions;

Jv(x) = 0 for |v|>x (E.32)

MODAL RAY BOUNCING -
FROM B/OTH WALLS

R V. W U

CIRCULAR MODAL
RAY CAUSTIC

Figure E.4, Ray picture of'regular modes .
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in the expression for eigenfunctions. Then (E.30) can be written as;

..j\)

) nlt
Qn = An(ka,kb) e

(-32)N, (kb)a (ke) (E.33)
n n

where an(x) is the Neumann function of order Ve By use of (E.32), the
mode expression in (E.33) reveals that most of the energy in this case
is attached to a region close to the outer shell, The ray picture of
these modes is shown in Figures E.5 and the caustic circle is in the
annular region, resulting in the ray bounce occuring only on the outer
shell. This ray interpretation is also discussed in [50] and similar to
the ray interpretation of whispering gallery modes inside a circular
cylindrical region [46,51]. Therefore, these modes will be referred as

whispering gallery (WG) modes. The modal ray angles of these WG modes

are given as follows:

-1 ,n
o =7 -sin”! (ga) . (E.34)

x
=2

MODAL RAY FOR A
WHISPERING GALLERY MODE

CIRCULAR MODAL
RAY CAUSTIC

Figure E.5. Ray picture of whispering gallery modes.
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APPENDIX F
MODAL FIELD EXPRESSIONS IN A CIRCULAR WAVEGUIDE

The circular waveguide has a radius a, as shown in Figure F.1.
The field sets can be written as TE, and T™M, types. The propagation

constants of the TE, and ™, modes are given by

pl
' ) (M2
Bom = VK2 - (7)) (F.1)
- and |
L
Bnm= k-(a) (F'Z)

where Prm is the m " root of the n'" order Bessel function, namely

InlPyy) =0 | (F.3)

1
and Prm is the mth root of the derivative of the Bessel function of

order n; as follows:

Ip (Ppy) =0 . (F.4)
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a4 Ya".

e U

Figure F.1, The circular waveguide geometry,

The field expressions are given as follows apart from the phase factor

along the ; direction:




TE modes ™ modes
] 1
:N' (PnmY2q (PnmPy (€OS Nn¢ 0 )
hz JNnm( gm) Jn( gm ) {sin né (F.5a;b)
1
i Pnmy2 PhmPy [COS N¢ .
¢ 0 N COm)E3, (BOm2) {Gin ng (F-623D)
[} [} v
' BnmPnm 4'(PnmPy [COS n¢ _ ey .
hp Nnm 3 Jn( ) {s1n né Te (F.7a;b)
L] ]
' NBpm g (Pamey [-Sin né ep ]
he  Nam—t (™) {cos ng 7o (F.8a;b)
BamPnm 31 (PnmPy [COS N )
- NBnm PnmPy (-Sin n¢ )
Z k 7 ;
h,nm —— “o .
Bm (F.11a;b)
Ze,nm ' -EEE Z, (F.12a;b)
2
1
N v (F.13)
m - Jp(Pa) Vﬁwusnm on(p;\mZ - n¢)
2
nm Pam Jn (Ppm) Vﬁwesnm on
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1
The normalization factors Nnm and Nnm yield unit power in each mode.

Here, €on = 2 forn=20, and 1 for n > 0,

To obtain a ray picture for the typical modal field whose p and z
variation is given by

=iy |z|
nm
Jn (gnmp) e (F.15)

where

]
Prm for TE_ modes
a-g = z (F.16)

nm p  for TM_ modes
nm z

and

Bnm for TMZ modes

¥ - (F.17)
nm B for TM_ modes

nm Z

one may decompose Jn(x) as

ng)(x) + Hgl)(x)
Jn(x) = > . (F.18)

Thus, the expression in (F,15) becomes

1 -j'Y |ZI 1 -jY |ZI
B0 o B T

From the large argument asymptotic form of the Hankel functions, it can
be determined that the first term represents conical rays propagating

away from the axis of the waveguide and the second term represents
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conical rays propagating toward the axis of the cylinder. The described
ray picture has caustic along the guide center, therefore it is valid

away form it. The modal ray picture is sketched in Figure F.2 below,
'

The modal ray angles . S,

m and Snm are as follows:

P

) -1 nm
8. = sin " (@) (F.19)
and
1 Pm v
8., = sin (=) . (F.20)

It is also noted that the modal field is not completely transverse

to the conical ray propagation direction, since the radial component of
the field has contribution along the conical ray propagation direction.
\However, for the modes sufficiently away form cut-off this contribution

js small and can be neglected to obtain a ray optical representation.

DIVERGING RAY CONES

-‘N‘ﬁ
=== INCIDENT nm
e e e am ee — @fNNNNN
P"—'*_

=- \ MODAL FIELD

MODAL RAY CAUSTIC

CONVERGING RAY CONES

Figure F.2. Conversion of waveguide modal field into the conical ray
field.
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APPENDIX G

WAVEGUIDE EXCITATION PROBLEM

Figure G.1. Waveguide Geometry

Let a source § be located inside a waveguide as shown in Figure

G.1. S can be an electric current source J or a magnetic current source

ﬁ, which generates Et, Hi. Thus,

pu iy |
« I+

) ‘ (G.1)

© i+
o I+
L J

are the fields generated by § in the t; directions. In this summation p
is the compact summation index representing the double summation over
nn

mode indices "n" and "m", It is of interest to find (Et,ﬁt). Here, E*

will be determined via an application of the reciprocity theorem as in

[1].
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The modal fields can be decomposed into transverse and axial

components as follows:

- - - FjB n
HB = (tht + Hpn) e P (6.2a)
- - - FjB n
EE=(E,.+E )e P . (6.2b)

Case (i): It is of interest to find the strength of the mode E;,

ﬁ; generated by §. (Here q is the compact index representing the mode

indices "ij").

From the reciprocity theorem:

[ff EYed dv for S=J
v 49

[/ [Exﬁ;-ﬁgxﬁ]-a ds = - - - (6.3)
S,+S_+S, -IJI quM dv for S=M
where E, H = E+, HY on S, and E.H=E,H on$S . Also, E; X n ! = 0.
W

Thus, the above reciprocity relation simplifies to:
/] [E+xﬁ+-é+xﬁ+] e nds + [f [E'xﬁ+-E+xﬁ'] e (-n) ds
S+ q 49 S q q

{3 dv for 5=3
I{f gt M TOr . (G.4)

-[ff HeM dv for S=M
v o a
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Substituting ET, Htand E=, H from (G.1) and using the orthogonality

condition:

g[ﬁxﬁ

:] ends=0 for q#p (6.5)

one obtains a relationship in terms of only the qth mode (i.e., p=q
case)
-j2n. - - - - -j28 n, .

+ - - - - q _ q + .
éf Aq[(eq+Eqn)x(Hthan)e (eq+Eqn)x(Hthan)e Jen ds
+

- - - - PS

-gf A;[(eq-Eqn)x(Hqt+an)-(eq+Eqn)x(-Hqt+an)]-n ds

[ff EYed dv for $=J
] q

= - - - - (G.6)
-[ff H'eM dv  for S=M
v 9
or
- - - - =JjB m - -
| [If (eq+Eqn)-J e %dv for S=J
- - " v
-2 A J[E _xH  onds = . . . -jBn . (8.7)
s oatoat ~[ff (H +H )M e 9 dv for S=M
- ] qt qn
Thus
- - - - =JjB.n -
E . q =
, f{f ( qt+Eqn) Je dv for S=J
Ay = - A N LA - .| (6.8)
2 gf eqXHqt'" ds -f{f (Hqt+an)-M e dv for S=M

where A; is the excitation coefficient of the mode E; traveling to the

right of the source, i.e., in the region n<n_ shown in Figure G.1.




Case (ii): If E;, ﬁ; is chosen as the waveguide mode of interest

as in Figure G.2, then the coefficient A; of. the mode E; traveling to

the left of the source (n>n+) is given by:

_ g _
[If (E_ -E )-.JeJ qndv
+ 1 v

A | = - - "~ - - - _jB . (Gcg)
2 E $XHogom ds <[] (H +H YeMe Tdv
s, 1 @ v

Note that é] eqxHqt-nds=équtxHqt-nds=£qutxHqt-nds where S_ is any

cross-sectional area of the waveguide.

Figure G.2, Waveguide geometry with fields radiated to the left (n>n+)

of § being of concern,
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Although Equations (G.8) and (G.9) are given for a volume source
distribution, it is very simple to modify them for a surface (or line)
source distribution. For this purpose, the volume integral on the right
hand side of Equations (G.8) or (G.9) should be replaced by a surface
(or 1ine) integral over the extent of the surface (or line) source

distribution,
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APPENDIX H
EDGE CORRECTION FOR APERTURE INTEGRATION

PERFECTLY
CONDUCTING
HALF-PLANE

Figure H.1. Scattering from a perfectly-conducting half-plane.

As shown in the figure, a perfectly-conducting half-plane is
located in the region y=0, x<0. The geometry is infinite in the
;-direction, therefore the problem can be reduced to a scalar problem in
terms of the ;-component of the electric field (Ez) or the 2-component
of the magnetic field (Hz). The former case is called the soft case and
the latter is called the hard case. The analysis for both cases are

very similar, therefore only the soft case will be considered here.
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Let S S,, denote the top and bottom surfaces of the half-plane,

t’ b’
respectively and Sa denote the aperture surface making an angle 6 with
the ;-axis as shown in the figure. The half-plane is illuminated by a

plane-wave

gl o (Jkecos(e-6') (0<o <m) (8>7) (H.1)
In (H.1) 8 and ¢' is restricted so that there exists reflected
fields at the aperture surface Sa. The analysis can be simlarly carried
out to the cases where this restriction is not present. The total field
E, can be written as the combination of three contributions; namely, the
incident, the reflected and the diffracted fields. The incident and
reflected fields are also called the geometrical optics (GO) fields.
The GO field is given by the following expression:
.1
e - ejkpc05(¢+¢')_ejkpc05(¢+¢')=e3kxx

2jsink;y ; on St’ Sa

=0 ; on Sb (H.2)
since Sb is in the shadow region of the half-plane. In (H.2),

ky = kcos¢' and k! = ksing' (H.3a;b)

i
y
The transverse fields can be calculated using

. - ~ 3 o~ 3
-‘]kZO H=(-y 3x +X a_y) EZ (H.4)

Therefore, the transverse geometrical optics fields can be obtained

using Equations (H.2) and (H.3):
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jkix

-3kz, WY = jk; e X 2cosk;y | ~ (H.5)
i
. Jjkox .
-3kZ, H§° - -jk;,e X Zsink;y (H.6)

In the physical optics (PO) approximation, one uses the radiation
integral to get the scattered field using the GO fields on the

illuminated side of the half-plane (St).

Therefore the PO approximation to scattered field is given by:

eP0 - [ ds' [-jkz. & (nxH%®) + (nxE%®) x v 6] (H.7)
4 S 0o O (o]
t
SR
where VG = (x ay t Y %) Go’ and

Gy (xoylx',y') = I ”éz) (klp=p"]) (H.8)

is the free-space Green's function in two-dimensions, and n is the unit
normal to the surface. Using Equations (H.5) and (H.6) and the fact
that E9%° = 0 on St’ in (H.7), one obtains:

PO _  (rls . ,
E, = -Oj [-3kz, H, + 6 ] dx . (H.9)

The Green's function G0 can also be written as:

e'jkxx‘jky|¥-¥'|

A Tex
GO = - 7r _e{ dkx ky e
(H.10)
where
2 2 _ .2
kx + ky =k . (H.11)
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Substituting (H.5) and (H.10) into (H.9) and changing the order of

integration, one obtains:

-jkxx-jkyy
eP0 . 2L Ty e—‘k—ki [ e
z 2X y Y o
. e e'jkxx“jk Y k;
PO _ =J
EY =5 J . dk
z T L Ky X
Using the transformation
kx=kCOSa ky=kS'ina s
Equation (H.13) becomes
PO _ -jkpcos (a- sing'
B, =7 cf e~Jkpcos(a-¢) cosatcos¢' da
a

where the integration path Ca is shown below:

-1'/2

Figure H.2. The integration path Ca.
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o kit 4 ik !
kax + kax

dx'

(H.12)

(H.13)

(H.14a;b)

(H.15)




On the other hand, if one integrates the GO fields over Sa and Sb to
get the scattered field, one obtains:
k _ - ~  ogo A =go
E, -Sf ds' | JKZ, 6, (n x H) + (n x E°°) x VGo] (H.16)
a
since GO field is zero on Sb'
Using (H.2), (H.5), (H.6) and (H,10) in (H.16), one
obtains:
k j e-Jkyy-kax .
_— e i .
E, = - Fxsineg -i dky ke I [(—kx+kx) s1ne+ky cos o]
i ic i i
_Fy + (kx+kx) cote+k ky +(k k) cote-ky_
; - 1 1 - |
-k cos® - T+ : : l l .
y k + (k'+k ) cote+k'! k + (k'+k ) coto-k!
i_y XX X y XX/ y! l
(H.17)

Using the transformations in (H.14) and after some straightforward

manipulations one finally obtains:

B . L5 | e-dkecos(a-e) _sing (H.18)

z cosatcos¢’ da .
c
a

The Equations (H.15) and (H.18) are exactly the same, therefore the
Ufimtsev edge correction [26] to (H.15) can be used without modification

to correct for the aperture integration result of (H.18).
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APPENDIX I

APPLICATION OF THE RECIPROCITY THEOREM TO FIND THE
RELATION BETWEEN THE SCATTERING MATRICES [Sy32] AND [Sp1]

\ v SURFACE so/)
AN /<;
/
[+ o]

Figure 1.1 The geometry of the problem.

Figure I.1 shows an open-ended waveguide cavity geometry with
perfectly conducting walls., Let there be modal fields inside the
" waveguide propagating in +:1 direction represented by:

-jB n
_ ¢t (2 .z n
B Cn (ent+enn) €

-J Bnn

o 4
]

+ - -
n - Cn (hnt+hnn) e
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(1.2)




where ént (or ﬁnt) is the transverse electric (or maghetic) field, and
énn (or ﬁnn) is the longitudinal electric (or magnetic) field. C: is
the coefficient of the nth mode.

Some of the energy carried by this modal field will be radiated into
the free space through the aperture., The far field radiation can be
calculated approximately by the aperture integration of the modal field
and the resulting radiated fields are shown by E™ and ﬁr.

The rest of the energy of the incident mode will reflect back to the

guide in terms of an mth mode.

- P jg n
‘ Em = I‘mn Cn (emt-emn) (1.3)
- JjB8 n
- _ + - m
Hm =T Cn ( ﬁmt+ﬁmn) e (1.4)

where an is the modal reflection coefficient from the open end.

First consider the geometric plane defined by n=-L inside the
semi-infinite waveguide and let SO denote the area of this waveguide
cross section ét n=-L as shown in Figure I.1. Then let S denote the
surface area which tightly encapsulates the complete outer (exterior)
surface of the semi-infinite waveguide, and also a portion of the inner
walls of this waveguide up to the distance n=-L within the guide. The
surface S does not include the plane at n=-L within the guide. Let ¢

denote the sphere at infinity which surrounds the semi-infinite guide

such that S on the exterior or outer wall of the semi-infinite guide is
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connected to the surface £ at n+ -» as in Figure A.1., Next, consider
the following two cases. In the first case, the semi-infinite
rectangular waveguide is excited from within by the modal fields with
amplitude C; which propagate in the +; direction. However, in the
second case, the geometr} is excited by external fields, € and ﬁe’
which for convenience is assumed to be produced by an electric test
source ae at ﬁp exterior to and in the far zone of the semi-infinite
guide.,

Let the equivalent sources Js and ﬁs be located at n=-L in the

guide,
- a - jB L -jB L_
- + n + m
JS n x Cn (ﬁnt+ﬁnn) e + 3 Ton Cn ( ﬁmt+ﬁmn) e (1.5)
- A s L . -ijt‘
MS = -n X l Cn (ent+enn) e + ; L. Cn (emt-emn) e (1.6)

where 6 is the unit vector pointing into the volume V, enclosed by
surfaces S+SO+Z. From reciprocity one obtains:

/] % E'x H® - Ex HM E . nds = /I J_ o« E" dv (I1.7)
T+S¥s - - vioe

However, by the boundary conditions

nxE | =0 R (1.8)
on S
and
N
nxE | =0 . (1.9)
on S
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Also, (Er, ﬁr) and (Ee, He) satisfy the radiation condition on &.

Therefore (I1.7) reduces to:

e L w ’ ce 73 .= JEr
- éj HE « M ds + £f E® « Jgds =f, - E (R) , (1.10)
0

since
(I.11)

a point source in the far field.
In (I.11) ﬁp is the position vector from the reference point to
point P.

Inside the waveguide the fields E® and H® will have the following

representation
- jg.n
EE=zA" (6, -2 )e P 1.12
A (B - &) (1.12)
- JB n
H® = 5 A" (-R et R eJ P . (1.13)
p p pn
Substituting (I.12) and (I.13) into (I.10) one obtains:
-j8 L . Js L . =3B L~
_ - P a+ l - n = m
gf T Ap ( ﬁpt+ﬁpn) e Cn € xn e + ; rmn(emtxn)e ds
oP [ _
-jB T JjB L - -j8 L~
- T A (e, -e P ct i e " -xr (nxfi de ™ |ds
££ p p ( pt pn) (n nt) m mn( mt)
_ = . gr |
=P E (Rp) . (I.14)
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Using the orthogonality property of waveguide modes one obtains:

- = ~ ."._ _ = -r
gf &4 X hnt e nds (-Cn An) 2=p, E (Rp) (1.15)
_ "o —
- 'r'
P, * E (Rp)
+ . - .
-2C A= = n . (1.16)

ffé'nx n-nds
S
4]

In order to produce an incident field E' =0 EL +0 E; at the opening of

the waveguide, one can let

A5 oA i An JkR
- i iy, AT p
P = - (6 Eg + ¢ E¢) Fon Rp e (1.17)

where 6 and ¢ are defined as the elevation and azimuth angles in a

spherical coordinate system located at 0, in Figure I.1. Thus,

Vel i) LBy e P
+ .
(0Fg+ ¢ B - B (R)Rye .
A” = ] . (1.18)
n + ~ . Juu
-2 C Sff €t XAy nds
0

In matrix notation, it is clear that (I.15) can be expressed as:

P
ex

[ER(P) E(P) EL(PY] | Py | = ([C31D) (20 &y ¥y -nds]) (A
Py 0 (1.19)
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where (-2[£féntxﬁnt-nds]) is a diagonal matrix. It is noted that
o .

E" contains C: since Er(P) is produced by the radiation of E:.

Furthermore, it is obvious from (2.13) and (2.21) that

E (P)
+
EL(PY | = [5),] [c)] - (1.20)
E”(P)
and
p
ex
[A] = [S,0] Pey . (1.21)
PEZ

Incorporating (1.20) and (I.21) into (1.19) yields:

P
ex ex
(IN31,D)T | Pey | = (DT 2L LB xh nas DI RD) | Py |-
Pez ° ’ PeZ
(1.22)

The relationship between [512] and [Szg] becomes evident from (I.22);

namely

T

[s},] = (-Zéféntxﬁnt-;ds])[szg] . (1.23)

(o]
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APPENDIX J
EQUIVALENT MAGNETIC LINE DIPOLE

AZ

M)W

A

Figure J.1. A wedge illuminated by a E;-polarized plane wave.

In this appendix, the edge diffracted field from a wedge
illuminated by a Eo-polarized plane wave (shown in Figure J.1) will be
represented by the free-space radiation from magnetic line dipoles

located at the edge position. The incident plane wave is in the

following form:

(s) = -3kt
=8 e E (J.1)
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where
- . - 2 A . 1‘ . S A . -i -
- -k(s1ne1 cos¢1 X + sin @ 51n¢1 y + coso z) (J9.2)

and s is the vector defining an observation point. The angles ei and ¢i
are the elevation and the azimuth angles, respectively of the direction
of the incident plane wave with respect to the wave with respect to the
spherical coordinates. It is clear from Figure J.1 that ei=n-§o.

The electric field diffracted from the wedge and observed at the

observation point P shown in Figure J.1 is given by [26]

-~

d ~

i~ = P -jks
E = -8 D (6,458 ,8,0)\[5Tp7s) &7

E' (J.3)
where D is the soft diffraction coefficient (non-uniform soft
diffraction coefficient is given in (3.3)), and p is the caustic
distance for the diffracted rays. If p>>s, then the diffracted field

expression becomes

. -jks
e
=d

oo~ ix o~ i
E = ‘B DS(¢’¢ 980983(!) /-S- E

(9.4)

Now, consider the free-space radiation from magnetic line dipoles
located along the z-axis as shown in Figure J.2. For an observation

point with an elevation angle 6, the dipoles are given by

-jkzcos @

ﬁd = (; sing + z cos® cos¢) My © §(x)68(y) (J.5)

where 6 is elevation angle and 9% is a constant angle and &§(x) is the

Dirac delta function.
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Figure J.2, Magnetic line dipoles along g-axis.

The electric vector potential Fis given by

E ok ~ M — .
F = (ksin® + z cos® cos¢0) %} ng)(k /x2+y2 sine) a-Jkzcos®

(J.6)

The radiated electric field is given by

- -~ M .
E = -VxF=¢ 77 {-kcosecos¢osineH§2)+jkcosesinecos¢0H§2)}e'szcose
-~ M4 .
+ 037 {jkcosesinesin¢oHéz)} g-Jkzcos®
~ M4 .
-2 zj‘{ksinzesin¢o ng)} g-JkzCOS® (J.7)

where the arguments of the Hankel functions are as in (J.6). If one

employs the large argument approximations to Hankel functions [44],
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one obtains

A -jks '
- ~ . L e
E=28 Md « sine \/ gx 75 (J.8)
where
s = VxZryZ+zZ (J.9)

In (J.8) the angles 6 and ¢, are replaced by E and ¢, respectively.
Therefore, (J.8) applies for the observation point P of Figure J.1. By
comparing (J.4) and (J.8), one deduces the strength of magnetic dipoles

as follows:

8n Ds(¢s¢1; gosgaa) i
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APPENDIX K

DESCRIPTION OF THE EQUIVALENCE PRINCIPLE
EMPLOYED IN THE CALCULATION OF SCATTERING MATRICES

Figure K.1. Radiation of a dipole dp_ in the presence of the
semi-infinite waveguide,

Let a dipole dﬁe radiate in the presence of the semi-infinite
waveguide structure. The aperture of the waveguide is shown by Sa and

Sw denotes the surface of the wavequide wall. Let the total field be
represented by Et,ﬁt. By the equivalence principle one can use the

equivalent sources Jeq and ﬁe on Sa and Sw which radiate the total

q
field inside the waveguide region and null field in the outside region,

as shown in Figure K.2.

290




(0,0) ’4-——_16 :ﬂ;
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®
Figure K.2. The equivalent problem of Figure K.1.
The equivalent sources are given by
= e =t
Jeq =nxH (K.1)
T P
meq = Exn {Ke2)

where ﬁ is the unit vector pointing into the waveguide region. By the
boundary conditions, the equivalent magnetic. sources on Sw is zero., If
these sources are known, then the fields Et, ﬁt coupled through the
waveguide can be obtained. In order to calculate the fields one can
react the sources and fields of Figure K.2 with the sources and the
fields of Figure K.3, where a dipole dEe is radiating inside the
infinite waveguide. That infinite waveguide is obtained by extending

the semi-infinite wvaeguide of Figure K.1.
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Figure K.3. The dipole dﬁe radiating in the infinite waveguide.

Clearly, the equivalent electric source Jeq on Sw’ will not react
with the modal fields of the dipole dﬁe, since the tangential electric
field in the modal expressions vanishes on Sw‘ Therefore, coupling
through the waveguide modes will be determined by only the equivalent
sources at the aperture Sa' Also, it is noted that since the equivalent
sources radiate null field external to the semi-infinite waveguide, the

reaction of these fields with the dipole source of Figure K.3 will be

zero,
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APPENDIX L
ILLUSTRATION OF RECIPROCITY IN THE APERTURE INTEGRATION

PERFECTLY CONDUCTING WALLS

Figure L .1, Modal radiation from the open end,

In this appendix, the aperture integration technique will be used
to obtain the hoda] radiation from and coupling through the open end of
a semi-infinite waveguide in the front half-space. It will be shown
that these two results satisfy the reciprocity relationship stated in
Appendix I.

The radiation problem is sketched in Figure L.1. The interior
fields (E+,ﬁ+) propagate through the aperture at the open end and

radiate into the exterior region. In order to simplify the analysis the
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observation point is assumed to be in the far field of the aperture and
separated by the distance r from the origin. The interior fields E" and

4 . . . .
H are given in terms of a summation of waveguide modes, so

=+ + =+ }
E =73 Cn En (L.1)
n
and
~+ + o+
H = ﬁ C, Ho (L.2)

where C: is the amplitude of the nth

modal field. The aperture
integration procedure assumes that the radiated field is due to the
approximate equivalent electric and magnetic currents 35 and ﬁs located

at the aperture. The currents 35 and ﬁs are given by

JS nx H (L.3)

]

mi
+

- 2 4

MS X

(L.4)

where 6 is the unit normal vector at the surface of the aperture
pointing into the exterior region. The approximate currents are then
assumed to radiate in free-space. Therefore, the far-zone field

radiated by the equivalent sources is written as

. =jkr ke Rt
-rad _dk € N T
B =47 —F éf e [Z RxRxJ +RxM_] ds' (L.5)
a
where the unit vectors r and ﬁ are in r and R directions, respectively

as shown in Figure L.1, and r' is the vector from the origin to the

source point. The substitution of (L.1) through (L.4) into (L.5) yields
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-jkr + T
- ik e tC Jkrter L al A -y s
grad _ %;' = n N é[ e [ZoRxRx(an:)+Rx(E:xn)] ds'
a

(L.6)

The next step is to calculate the coupling of incident energy due

to a small electric dipole dﬁe into the waveguide modes using the

i

aperture integration. The dipole dﬁe is located at §' from the origin

and the amplitudes of the modes excited by the dipole is shown by (Cgo).
The mode amplitudes are given by (3.97) |

[ (& -0 - - w0 os
Sa

n S
¢80 . - (L.7)

n 2 [ Et x H; . ds'

G0 =G0
where JS and MS

are given by (3.92) and (3.93),

Figure L.2, Coupling of incident dipole field.
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If (3.92) through (3.95) is employed in (L.7) the folloing is obtained

N J-iks”
0 _ Jk T TR, e ol I
P* C = <am K éf [En-(s xdpe)xn-ZoHn nx(s xs xdpe)]
o Ta
P
QJkF'es’ 4y (L.8)
where
- e TS Y ) '
P, =2 éf Er x HY o dS (L.9)
a
By rearranging (L.8) one obtains
” e-jksi
6o _ Jk T, IS I SR
Pt Co = ~4x K éf [dpe s'x(E xn) + Z dp s xs x(ann)] ds
a
(L.10)

If the dipole is located at r, then from (L.6) and (L.10) one obtains

d, - ered = op ¢ (L.11)

which is the reciprocity relationship between the problems of the modal

radiation and the coupling into the waveguide due to a dipole source.
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